3.1.4. развитие конечного мозга

3.1.4. развитие конечного мозга: Нейрофизиология и высшая нервная деятельность детей и подростков, Смирнов Валерий Марксович, 2000 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон В пособии рассмотрены общие закономерности функционирования центральной нервной системы (ЦНС) детей и подростков, нейронная организация ЦНС, механизмы возбуждения и торможения нейронов ЦНС, медиаторы и их физиологическая роль,...

3.1.4. развитие конечного мозга

Конечный мозг (telencephalon) также развивается из переднего мозгового пузыря. Его стенка, соответствующая конечному мозгу, выпячивается в дорсолатеральном направлении и образует два мозговых пузыря, которые с течением времени преобразуются в полушария мозга. Полости этих пузырей образуют боковые желудочки полушарий.

Процесс цефализации, особенно присущий человеку, проявляется в бурном развитии конечного мозга. Пузыри конечного мозга, разрастаясь за короткий период времени, покрывают собой промежуточный мозг, затем средний мозг и мозжечок. Наружная часть стенки мозговых пузырей растет значительно быстрее внутренней.

В начале 2-го месяца развития стенка мозговых пузырей содержит большое количество мелких короткоотростчатых нейробластов так называемый материнский слой коры. Среди этих клеточных элементов встречаются спонгиобласты, имеющие длинные тонкие отростки, направляющиеся к наружной поверхности мозгового пузыря.

Начиная с 3-го месяца внутриутробного развития гистологически становится отчетливой закладка коры: она представляет собой узкую ленту, состоящую из густо расположенных клеток. Дальнейшая дифференцировка идет двумя параллельными путями: путем образования слоев и путем дифференцировки клеточных элементов, которая заканчивается лишь в постнатальном периоде. Основным морфологическим проявлением дифференцировки нейронов в развивающейся коре больших полушарий является усложнение их отростков, в частности прогрессивный рост дендритов и боковых коллатералей аксонов. Иными словами, дифференцировка нейронов коры это включение нейронов во все большее количество межнейронных связей.

К 3-му месяцу развития между пузырями образуется мозолистое тело. На 11-12-й неделе внутриутробного периода полушария мозга можно узнать по их форме.

С 5-го месяца в коре больших полушарий уже заметна цитоархитектоника. К середине 6-го месяца внутриутробного развития в тех участках коры, которые образуют филогенетически молодую кору (neocortex), видно более или менее четкое разделение на шесть слоев, обнаруживаются отличия в строении отдельных полей.

Существуют выраженные отличия в скорости дифференцировки каждого из слоев коры. Так, II и III слои коры становятся четко различимыми только после рождения. Морфологически раньше других дифференцируются гигантские пирамиды V слоя передней центральной извилины.

К моменту рождения большинство нейронов глубоких слоев коры достигают уже значительной степени зрелости, по форме тела и развитию отростков приближаясь к структуре этих слоев у взрослого. Значительная часть нейронов поверхностных слоев коры находится на более ранних этапах формирования.

К концу периода внутриутробного развития отчетливо выражена миелинизация волокон, особенно в более простых (филогенетически старых) системах мозга.

В это время происходят важные биохимические сдвиги в нервной ткани. Наиболее существенными из них являются изменения ряда ферментных систем, в результате которых осуществляется переход метаболизма мозга от анаэробного к аэробному. Следует отметить, что новорожденный ребенок, так же как и детеныши других млекопитающих, легче переживает относительно длительную гипоксию, чем взрослый.

У плодов и новорожденных нервные клетки в коре лежат сравнительно близко друг от друга, причем часть из них располагается и в белом веществе. По мере роста ребенка концентрация клеток в единице площади снижается, несмотря на то что в серое вещество мигрируют клетки из белого вещества.

Мозг новорожденного очень велик более 10\% от общей массы тела. К периоду полового созревания масса его составляет всего около 2\% от массы тела, хотя, естественно, абсолютная масса мозга увеличивается с ростом ребенка.

Мозг новорожденного незрелый, причем кора полушарий большого мозга является наименее зрелым отделом всей нервной системы. Основные функции регулирования различных физиологических процессов выполняют промежуточный и средний мозг.

 «Новорожденный от рождения не способен ни к чему, кроме способности всему научиться» (Л.О.Бадалян).

В глубокой неприспособленности ЦНС новорожденного заложены основы гибкой, дифференцированной адаптации к условиям среды, обучения. По-видимому, это прямо связано с самым большим по продолжительности в животном мире периодом детства у человека. Даже у высших обезьян детеныш 1,5-2 лет уже вполне способен к самостоятельному существованию и не нуждается в родительском уходе. После рождения масса мозга увеличивается в основном за счет роста тел нейронов, происходит дальнейшее формирование ядер головного мозга. Их форма меняется мало, однако размеры и состав их, а также топография относительно друг друга претерпевают достаточно демонстративные изменения.

Процессы развития коры заключаются, с одной стороны, в образовании ее шести слоев, а с другой в дифференциации нервных клеток, характерных для каждого коркового слоя. К моменту рождения у ребенка уже заканчивается образование шестислойной коры. В то же время дифференцировка нервных клеток отдельных слоев к этому времени еще далеко не завершается. Наиболее интенсивно дифференциация клеточных элементов, а также миелинизация аксонов нервных клеток коры идет в постнатальном периоде в течение 1-го и 2-го годов жизни ребенка. В этот период резко увеличиваются масса и поверхность коры полушарий большого мозга.

К 2-летнему возрасту заканчивают свое формирование пирамидные клетки коры.

Можно признать достаточно обоснованным тот факт, что именно первые 2—3 года жизни являются наиболее ответственными этапами морфологического и функционального становления мозга ребенка. На 1-м году жизни закладываются основы психической деятельности, идет подготовка к самостоятельному хождению, речевой деятельности. Существует мнение, что в этот период происходит «первичное обучение», т. е. формирование нейронных ансамблей, которые в дальнейшем служат фундаментом для более сложных форм обучения.

В последующие годы темп развития корковых структур хотя и замедляется, но к 4-7 годам клетки большинства областей коры становятся близкими по строению клеткам коры взрослого человека. Полностью развитие клеточных структур коры полушарий большого мозга заканчивается только к 10-12 годам. Морфологическое созревание отдельных областей коры, связанных с деятельностью различных анализаторов, идет неодновременно. Раньше других приближаются к строению мозга взрослого человека корковые концы обонятельного анализатора, представленного в древней, старой и межуточной коре. В новой коре прежде всего развиваются корковые концы двигательного и кожного анализаторов, а также лимбическая область, связанная с интерорецепторами, и инсулярная область, имеющая отношение к обонятельной и речедвигательной функциям. Затем дифференцируются корковые концы слухового и зрительного анализаторов и верхняя теменная область, связанная с кожным анализатором. Наконец, в последнюю очередь достигают полной зрелости структуры лобной и нижней теменной областей и височно-теменно-затылочной подобласти. Особенности структурного развития отдельных корковых отделов анализаторов определяют до некоторой степени последовательность появления условно-рефлекторных реакций ребенка.

Как было отмечено, процесс миелинизации нервных проводников начинается еще в эмбриогенезе. Однако темп образования миелиновых оболочек у разных нервных стволов различен, в результате чего к моменту рождения часть нервных проводников как центральной, так и периферической нервной системы не заканчивает миелинизацию. В этой связи следует помнить, что миелинизация черепных нервов осуществляется в течение первых 3-4 мес и заканчивается к 1 году 1 г 3 мес постнатальной жизни. Миелинизация спинальных нервов завершается несколько позднее к 2-3 годам.

Существуют, по-видимому, еще две закономерности, характерные для процесса миелинизации. Одна из них заключается в том, что филогенетически более древние пути начинают миелинизацию несколько раньше, чем молодые. Именно этим, скорее всего, объясняется тот факт, что первым миелинизирующимся (еще в эмбриогенезе) проводником у человека является вестибулярный нерв.

Вместе с тем четко установлено, что нервные проводники тех функциональных систем, которые обеспечивают выполнение жизненно важных функций (например, акт сосания), также миелинизируются опережающими темпами. Это составляет вторую закономерность, установленную в онтогенезе процесса миелинизации.

Масса головного мозга новорожденного имеет относительно большую величину и в среднем составляет 1/8 массы тела, т.е. около 400 г, причем у мальчиков она несколько больше, чем у девочек. У новорожденного хорошо выражены длинные борозды, крупные извилины, но глубина и высота их невелики. Мелких борозд и извилин относительно мало; они появляются постепенно в течение первых лет жизни. К 9-месячному возрасту первоначальная масса мозга удваивается и к концу 1-го года жизни составляет 1/11-1/12 массы тела. К 3 годам масса головного мозга по сравнению с массой его при рождении утраивается, к 5 годам составляет 1/13-1/14 массы тела, к 20 годам первоначальная масса мозга увеличивается в 4-5 раз и составляет у взрослого человека всего 1/40 массы тела. Наряду с ростом головного мозга меняются и пропорции черепа. Боковые желудочки сравнительно широкие. Мозолистое тело тонкое и короткое, в течение первых 5 лет оно становится толще и длиннее, достигая к 20 годам окончательных размеров.

Следует отметить особенности созревания отдельных областей коры большого мозга.

Соматосенсорная область (поля 1, 2, 3). В процессе онтогенеза изменяется пространственная организация клеточных элементов соматосенсорной области, отмечается постепенное разрежение ее структурных элементов.

В период от рождения до 20 лет в полях соматосенсорной зоны пирамидные, звездчатые и веретеновидные нейроны претерпевают значительные изменения: увеличиваются их размеры, особенно в первые 7 лет жизни, меняются форма, характер ветвления дендритов. С возрастом в полях 1, 2 и 3 увеличивается относительное количество пирамидных нейронов за счет уменьшения числа переходных форм.

Зрительная область. В этой области первичная зона, воспринимающая световые раздражения, находится в поле 17. Вторичная воспринимающая зона, обеспечивающая зрительное опознавание и память, это поля 18 и 19.

Рост коры в ширину в полях 17 и 18 происходит до 3, а в поле 19 до 7 лет. Наибольшая скорость роста коры в ширину после рождения наблюдается в поле 19. После 8 лет ширина коры в изучаемых полях относительно стабилизирована.

Дифференцировка клеточных элементов зрительной коры происходит наиболее интенсивно в полях 17 и 18 в период от рождения до 1-го года, в поле 19 до 2 лет. К 5-7 годам пирамидные и звездчатые нейроны III и IV слоев зрительной коры приобретают специфическую форму, характерную для коры взрослых людей.

Задняя ассоциативная область. Особенностью развития этой области является то, что ее поля наиболее поздно достигают полной дифференцировки.

Процессы дифференцировки нейронов: типизация формы, увеличение размеров, усложнение дендритного аппарата осуществляются в V-VII слоях в более ранние сроки, чем в III-IV слоях, так что к 12 мес нейроны V слоя во всех полях оказываются более дифференцированными, чем в III слое, где интенсивная дифференцировка нейронов продолжается до 5-6 лет. Размеры нервных клеток всех типов наиболее энергично увеличиваются в первые 2 года. К 7 годам в подслое III становится более четкой форма пирамидных нейронов. Они как бы вытягиваются, их высота превышает основание в 1,5 раза и более.

В период от 8 до 12 лет увеличиваются протяженность и толщина апикальных дендритов пирамидных нейронов, рисунок их ветвления становится все более разнообразным, чаще встречаются пирамидные нейроны с разделенными апикальными дендритами.

Лобная область. Она, как и задняя ассоциативная область, созревает поздно. У новорожденных во всех полях нейроны относятся к одному размерному классу, к 6 мес к двум, к 12 мес к трем, в поле 45 к четырем размерным классам. После 1-го года наиболее значительно увеличивается число размерных классов в поле 8: к 5 годам их насчитывается 8, к 10-9, и в дальнейшем число их не возрастает. В поле 10 к 5 годам пирамидные нейроны относятся к 5 размерным классам, к 7 годам к 6, к 16 к 7, к 21 году к 8; в поле 45 к 8 годам отмечается 5 размерных классов, к 9-6, к 18 годам 8 размерных классов.

Установленные сроки интенсивного роста пирамидных нейронов в речедвигательном поле 45 (к 6 мес, 1 году и 5-6 годам) совпадают с периодами развития артикуляционных возможностей и активной речи ребенка.

Непирамидные нейроны в коре лобной области новорожденных слабо дифференцированны. Они характеризуются малыми размерами, неопределенностью формы, слабым развитием дендритных и аксонных аппаратов.

Созревание нейронов этой области происходит в 1 год, 3 года, 5-6 лет, 9-10, 12-14 и 18-20 лет. Это наиболее значимые этапы микроструктурных изменений ансамблевой организации лобной области коры большого мозга. Более продолжительное по сравнению с другими неокортикальными формациями развитие структуры лобной области коры, включающейся в реализацию как сенсорных, так и моторных актов, участвующей в осуществлении сложных психофизиологических церебральных функций, может рассматриваться как структурная основа длительного совершенствования в постнатальном онтогенезе целостной интегративной деятельности мозга человека.

Таким образом, в период от рождения до 20 лет структурные преобразования нейронных ансамблей осуществляются в различных областях коры по единому принципу, но в различные сроки и с разным качественным и количественным представительством каждого из структурных компонентов.

Параллельно морфологическому развитию нервной системы происходят функциональное созревание ее и соответствующие биохимические изменения.

Так, в спинном мозге, стволе и гипоталамусе у новорожденных обнаруживают ацетилхолин, γ-аминомасляную кислоту, серотонин, норадреналин, дофамин, однако содержание медиаторов низкое и составляет 10-50\% от такового у взрослых. В постсинаптических мембранах нейронов уже к моменту рождения появляются специфические для перечисленных медиаторов рецепторы.

Созревание структур ЦНС усиливается гормонами щитовидной железы. Стимулирующая роль в ходе созревания и функционального становления ЦНС отводится афферентным потокам импульсов, поступающих в структуры мозга при действии внешних раздражителей.

Электрофизиологические характеристики нейронов имеют ряд особенностей. В частности, у нейронов новорожденных несколько ниже ПП около 50 мВ (у взрослых 60-80 мВ). Поверхность тела нейронов и дендритов, покрытая синапсами, во много раз меньше, чем у взрослых. Возбуждающие постсинаптические потенциалы (ВПСП) имеют большую длительность, чем у взрослых, более продолжительной является синаптическая задержка, нейроны оказываются менее возбудимыми. Не столь эффективны процессы постсинаптического торможения нейронов вследствие малой амплитуды тормозных постсинаптических потенциалов (ТПСП), а также меньшего числа тормозных, синапсов на нейронах.

Вследствие морфологической и функциональной незрелости структур ЦНС, недостаточности элементарных механизмов возбуждения и торможения в раннем онтогенезе оказываются несовершенными многие проявления двигательной активности.

Улучшает электрофизиологические показатели миелинизация нервных волокон ЦНС (она завершается в возрасте 8-9 лет), так как уменьшается проницаемость клеточных мембран, совершенствуются ионные каналы, увеличивается мембранный ПП и поэтому возрастает ПД, повышается возбудимость нейронов. По электрофизиологическим показателям нейроны ЦНС детей приближаются к таковым взрослых в возрасте 8-9 лет.

Нейрофизиология и высшая нервная деятельность детей и подростков

Нейрофизиология и высшая нервная деятельность детей и подростков

Обсуждение Нейрофизиология и высшая нервная деятельность детей и подростков

Комментарии, рецензии и отзывы

3.1.4. развитие конечного мозга: Нейрофизиология и высшая нервная деятельность детей и подростков, Смирнов Валерий Марксович, 2000 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон В пособии рассмотрены общие закономерности функционирования центральной нервной системы (ЦНС) детей и подростков, нейронная организация ЦНС, механизмы возбуждения и торможения нейронов ЦНС, медиаторы и их физиологическая роль,...