5.7. структурные характеристики вариационного ряда

5.7. структурные характеристики вариационного ряда: Общая теория статистики, Елисеева Ирина Ильинична, 2001 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон Излагаются статистические методы: группировки, выборочный, индексный, корреля-ционный, анализ динамики.

5.7. структурные характеристики вариационного ряда

Медиана распределения

При изучении вариации применяются такие характеристики вариационного ряда, которые описывают количественно его структуру, строение. Такова, например, медианавеличина варьирующего признака, делящая совокупность на две равные части ~ со значениями признака меньше медианы И со значениями признака больше медианы (третьего банка из пяти в табл. 5.5, т.е. 196 млрд руб.).

На примере табл. 5.5 видно принципиальное различие между медианой и средней величиной. Медиана не зависит от значений признака на краях ранжированного ряда. Если бы даже капитал крупнейшего банка Санкт-Петербурга был вдесятеро больше, величина медианы не изменилась бы. Поэтому часто медиану используют как более надежный показатель типичного значения признака, нежели арифметическая средняя, если ряд значений неоднороден, включает резкие отклонения от средней. В данном ряду средняя величина собственного капитала, равная 269 млрд руб., сложилась под большим влиянием наибольшей варианты. 80\% банков имеют капитал меньше среднего и лишь 20\% больше. Вряд ли такую среднюю можно считать типичной величиной. При четном числе единиц совокупности за медийну принимают арифметическую среднюю величину из двух центральных вариант, например при десяти значениях признака среднюю из пятого и шестого значений в ранжированном ряду.

В интервальном вариационном ряду для нахождения медианы применяется формула (5.14).

где Me медиана;

х0 нижняя граница интервала, в котором находится медиана;

f’ Mе-1 накопленная частота в интервале, предшествующем медианному;

fMe частота в медианном интервале;

i величина интервала;

k число групп.

В табл. 5,6 медианным является среднее из 143 значений, т.е. семьдесят-второе от начала ряда значение урожайности. Как видно из ряда накопленных частот, оно находится в четвертом интервале. Тогда

При нечетном числе единиц совокупности номер медианы, как видим, равен не , как в формуле (5.14), a , но это различие несущественно и обычно игнорируется на практике.

В дискретном вариационном ряду медианой следует считать значение признака в той группе, в которой накопленная частота;

превышает половину численности совокупности. Например, для, данных табл. 5.1 медианой числа забитых за игру мячей будет 2.

Квартили распределения

Аналогично медиане вычисляются значения признака, делящие совокупность на четыре равные по числу единиц части. Эти величины называются квартилями и обозначаются заглавной латинской' буквой Q с подписным значком номера квартиля. Ясно, что Q2 совпадает с Me. Для первого и третьего квартилей приводим формулы и расчет по данным табл. 5.6.

Так как Q2= Me = 29,5 ц/га, видно, что различие между первым квартилем и медианой меньше, чем между медианой и третьим квартилем. Этот факт свидетельствует о наличии некоторой несимметричности в средней области распределения, что заметно и на рис. 5.1.

Значения признака, делящие ряд на пять равных частей, называют квинтилями, на десять частей децилями, на сто частей -перцентилями. Поскольку эти характеристики применяются лишь при необходимости подробного изучения структуры вариационного ряда, приводить их формулы и расчет не будем.

Мода распределения

Бесспорно, важное значение имеет такая величина признака, которая встречается в изучаемом ряду, в совокупности чаще всего. Такую величину принято называть модой и обозначать Мо. В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой. Например, по данным табл. 5.1 чаще всего за футбольный матч было забито 2 мяча 71 раз. Модой является число 2. Обычно встречаются ряды с одним модальным значением признака. Если два или несколько равных (и даже несколько различных, но больших, чем соседние) значений признака имеются в вариационном ряду, он считается соответственно бимодальным («верблюдообразным») либо мультимодальным. Это говорит о неоднородности совокупности, возможно, представляющей собой агрегат нескольких совокупностей с разными модами.

Так и в толпе туристов, приехавших из разных стран, вместо одной, преобладающей среди местных жителей модной одежды можно встретить смесь разных «мод», принятых у разных народов мира.

В интервальном вариационном ряду, тем более при непрерывной вариации признака, строго говоря, каждое значение признака встречается только один раз. Модальным интервалом является интервал с наибольшей частотой.. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения, т.е. число единиц совокупности, приходящееся на единицу измерения варьирующего признака, достигает максимума. Это условное значение и считается точечной модой. Логично предположить, что такая точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда имеем обычно применяемую формулу (5.15):

где x0 нижняя граница модального интервала;

fMo частота в модальном интервале;

fMo-1 частота в предыдущем интервале;

fMo+1 частота в следующем интервале за модальным;

i величина интервала.

По данным табл. 5.6 рассчитаем моду:

Вычисление моды в интервальном ряду весьма условно. Приближенно Мо может быть определена графически (см. рис. 5.1).

К изучению структуры вариационного ряда средняя арифметическая величина тоже имеет отношение, хотя основное значение этого обобщающего показателя другое. В ряду распределения хозяйств по урожайности (табл. 5.6) средняя величина урожайности вычисляется как взвешенная по частоте середина интервалов х (по формуле (5.2)):

Соотношение между средней величиной, медианой и модой

Различие между средней арифметической величиной, медианой и модой в данном распределении невелико. Если распределение по форме близко к нормальному закону, то медиана находится между , модой и средней величиной, причем ближе к средней, чем к моде.

При правосторонней асимметрии х̅ > Me > Mo;

при левосторонней асимметрии х̅ < Me < Mo.

Для умеренно асимметричных распределений справедливо равенство:

Общая теория статистики

Общая теория статистики

Обсуждение Общая теория статистики

Комментарии, рецензии и отзывы

5.7. структурные характеристики вариационного ряда: Общая теория статистики, Елисеева Ирина Ильинична, 2001 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон Излагаются статистические методы: группировки, выборочный, индексный, корреля-ционный, анализ динамики.