Страница 69

Страница 69: Базы знаний интеллектуальных систем, Автор неизвестен, 2001 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон Учебник для технических вузов по входящим в различные дисциплины вопросам разработки интеллектуальных систем

Многомерное шкалирование (МШ) сегодня — это математический инструментарий, предназначенный для обработки данных о попарных сходствах, связях или отношениях между анализируемыми объектами с целью представления этих объектов в виде точек некоторого координатного пространства. МШ представляет собой один из разделов прикладной статистики, научной дисциплины, разрабатывающей и систематизирующей понятия, приемы, математические методы и модели, предназначенные для сбора, стандартной записи, систематизации и обработки статистических данных с целью их лаконичного представления, интерпретации и получения научных и практических выводов. Традиционно МТТТ используется для решения трех типов задач:

1. Поиск и интерпретация латентных (то есть скрытых, непосредственно не наблюдаемых) переменных, объясняющих заданную структуру попарных расстояний (связей, близостей).

2. Верификация геометрической конфигурации системы анализируемых объектов в координатном пространстве латентных переменных.

3. Сжатие исходного массива данных с минимальными потерями в их информативности.

Независимо от задачи МШ всегда используется как инструмент наглядного представления (визуализации) исходных данных. МШ широко применяется в исследованиях по антропологии, педагогике, психологии, экономике, социологии [Дэйвисон, 1988].

В основе данного подхода лежит интерактивная процедура субъективного шкалирования, когда испытуемому (то есть эксперту) предлагается оценить сходство между различными элементами П с помощью некоторой градуированной шкалы (например, от 0 до 9, или от -2 до +2). После такой процедуры аналитик располагает численно представленными стандартизованными данными, поддающимися обработке существующими пакетами прикладных программ, реализующими различные алгоритмы формирования концептов более высокого уровня абстракции и строящими геометрическую интерпретацию семантического пространства в евклидовой системе координат.

Основной тип данных в МШ — меры близости между двумя объектами (i, j) — dij. Если мера близости такова, что самые большие значения dij соответствуют парам наиболее похожих объектов, то dij — мера сходства, если, наоборот, наименее похожим, то dij — мера различия.

МШ использует дистанционную модель различия, используя понятие расстояния в геометрии как аналогию сходства и различия понятий (рис. 5.3).

Рис. 5.3. Расстояние в евклидовой метрике

Для того чтобы функция d, определенная на парах объектов (а, b), была евклидовым расстоянием, она должна удовлетворять следующим четырем аксиомам:

d(a,b) ³ 0,

d(a,a) = 0,

d(a,b) = d(b,a),

d(a,b) + d(b,c) ³ d(a,c).

Тогда, согласно обычной формуле евклидова расстояния, мера различия двух объектов i и j со значениями признака k у объектов i и j соответственно Xik и Xjk:

Дистанционная модель была многократно проверена в социологии и психологии [Monahan, Lockhead, 1977; Петренко, 1988; Шмелев, 1983], что дает возможность оценить ее пригодность для использования.

В большинстве работ по МШ используется матричная алгебра. Геометрическая интерпретация позволяет представить абстрактные понятия матричной алгебры в конкретной графической форме. Для облегчения интерпретации решения задачи МШ к первоначально оцененной матрице координат стимулов X применяется вращение.

Среди множества алгоритмов МШ широко используются различные модификации метрических методов Торгерсона [Torgerson, 1958], а также неметрические модели, например Крускала [Kruskal, 1964].

При сравнении методов МШ с другими методами анализа, теоретически применимыми в инженерии знаний (иерархический кластерный анализ [Дюран, Оделл, 1977] или факторный анализ [Иберла, 1980]), МШ выигрывает за счет возможности дать наглядное количественное координатное представление, зачастую более простое и поэтому легче интерпретируемое экспертами.

5.1.3. Использование метафор для выявления

«скрытых» структур знаний

Несмотря на кажущуюся близость задач, инженерия знаний и психосемантика существенно отличаются как в теоретических основаниях, на которых они базируются, так и в практических методиках. Но главное отличие заключается в том, что инженерия знаний направлена на выявление — в конечном итоге — модели рассуждений [Поспелов, 1989], динамической или операциональной составляющей ментального пространства (или функциональной структуры поля знаний Sf), в то время как психосемантика, пытаясь представить ментальное пространство в виде евклидова пространства, позволяет делать видимой статическую структуру взаимного «расположения» объектов в памяти, в виде проекций скоплений объектов (концептуальная структура Sk).

Помимо этого следует отметить ряд недостатков методов психосемантики с точки зрения практической инженерии знаний.

1. Поскольку в основе психосемантического эксперимента лежит процедура измерения субъективных расстояний между предъявляемыми стимулами, то и результаты обработки такого эксперимента, как правило, используют геометрическую интерпретацию — евклидово пространство небольшого числа измерений (чаще всего — двумерное). Такое сильное упрощение модели памяти может привести к неадекватным базам знаний.

2. Естественность иерархии как глобальной модели понятийных структур сознания служит методологической базой ОСП. Кроме того, и в естественном языке понятия явно тяготеют к различным уровням обобщения. Однако в большинстве прикладных пакетов не предусмотрено разбиение семантического пространства на уровни, отражающие различные степени общности понятий, включенных в экспериментальный план. В результате получаемые кластеры понятий, пространственно изолированные в геометрической модели шкалирования, носят таксономически неоднородный характер и трудно поддаются интерпретации.

Базы знаний интеллектуальных систем

Базы знаний интеллектуальных систем

Обсуждение Базы знаний интеллектуальных систем

Комментарии, рецензии и отзывы

Страница 69: Базы знаний интеллектуальных систем, Автор неизвестен, 2001 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон Учебник для технических вузов по входящим в различные дисциплины вопросам разработки интеллектуальных систем