Глава 10. мышечная деятельность и физические возможности ребенка

Глава 10. мышечная деятельность и физические возможности ребенка: Возрастная физиология, М.М. Безруких, 2002 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон В учебном пособии представлены современные концепции онтогенеза человека с учетом новейших достижений антропологии, анатомии, физиологии, биохимии, нейро- и психофизиологии и т.п. Рассмотрены морфофункциональные особенности ребенка на основных этапах возр

Глава 10. мышечная деятельность и физические возможности ребенка

Примерно 600 мышц, прикрепленных к костям, обеспечивают все перемещения и движения человека — от рефлекторных миганий и глотательных движений до виртуозных движений пальцев пианиста, рук скрипача или кисти художника. Все скелетные мышцы состоят из однотипных клеток, которые ввиду своей удлиненной веретенообразной формы называют мышечным волокном. Скелетные мышцы наряду с нервными структурами относятся к возбудимым тканям, составляющие их клетки — наиболее сложно устроенные в организме человека. С этим связано то обстоятельство, что мышечная ткань проходит очень долгий и многоступенчатый путь возрастного развития (рис. 34), претерпевая на этом пути несколько кардинальных перестроек.

Мышечное волокно

Основной структурно-функциональной единицей скелетных мышц является мышечное волокно. Это очень большое вытянутое многоядерное образование длиной в несколько сантиметров, при поперечнике около 100 мкм. Размер мышечного волокна в десятки тысяч раз превышает размер средней по величине клетки. Под микроскопом на продольном срезе мышечного волокна

Рис. 34. Возрастные изменения массы скелетных мышц

Рис. 35. Ультраструктура мышечной ткани человека: А — мальчик 11 лет; Б — взрослый мужчина

видна поперечная исчерченность, которая обусловлена тем, что его внутренние структуры периодически (через каждые 2—2,5 мкм) многократно повторяются (рис. 35). Подобные гигантские поперечно-полосатые волокна составляют мышечную ткань не только скелетной мускулатуры, но также сердца и некоторых внутренних органов.

Под микроскопом можно также обнаружить мелкие клетки — сателлиты, прилегающие к многоядерным мышечным волокнам. Эти клетки в определенных условиях быстро многократно делятся, принимая участие в процессах дальнейшего развития ткани и регенерации мышечного волокна после травм.

Типология мышечных волокон. Мышечные волокна, входящие в состав скелетных мышц, отличаются друг от друга по многим характеристикам. Чаще всего их подразделяют на два типа в зависимости от свойств главного сократительного белка миозина (табл. 11).

Волокна I типа содержат «медленный» миозин. Это сравнительно тонкие волокна с большим содержанием митохондрий и миоглобина (аналог гемоглобина, содержащийся в самих мышечных волокнах), поэтому они имеют красный цвет и их называют еще «красные». В этих волокнах преобладает аэробная энергетика, наиболее экономичная, но зависящая от доставки кислорода. Эти волокна малоутомляемы и обеспечивают выносливость мышц.

Волокна II типа содержат «быстрый» миозин. Они примерно в 2 раза толще волокон I типа. Этот тип подразделяется на подтипы IIА и IIВ.

Волокна типа IIВ содержат много АТФ и креатинфосфата в цитоплазме, но мало митохондрий и миоглобина, поэтому их называют «белые». Их энергетика базируется главным образом на анаэробных гликолитических процессах и в гораздо меньшей степени зависит от доставки кислорода. Однако эти волокна быстро утомляются при нагрузке. Именно они определяют важнейшее качество — силу.

Таблица 11

Характеристика типов мышечных волокон человека (по Дж. Хенриксону, 1978)

Показатель

Тип I

Тип IIА

Тип IIВ

Скорость сокращения

Низкая

Высокая

Высокая

Цвет

Красный

Красный

Белый

Содержание липидов

Высокое

Среднее

Низкое

АТФ-азная активность

Низкая

Высокая

Высокая

Площадь поперечного сечения, мкм2

3880

4950

3590

Капилляризация в расчете на 1 волокно

3,9

4,2

3,0

Капилляризация в расчете на 1 мм2

1,03

0,86

0,84

Активность СДГ (окислительные ферменты)

11,8

8,4

7,1

Активность ФФК (ферменты анаэробного гликолиза)

12,8

25,5

27,0

Процентное содержание в m. quadriceps femori

43,0

37,0

20,0

Волокна типа ПА по своим свойствам занимают промежуточное положение между волокнами типа I и подтипа ПВ. Эти промежуточные волокна характеризуются смешанной энергетикой, в которой примерно поровну представлены механизмы митохондриального окисления и анаэробного гликолиза. Размер таких волокон также промежуточный: меньший, чем волокон типа ПВ, но больший, чем волокон типа I. Площадь поперечного сечения волокон типа ПА составляет 2500—3500 мкм2. Эти волокна являются наиболее универсальными, адаптивными.

Двигательная единица. Группу (обычно несколько десятков) однотипных мышечных волокон снабжает управляющей информацией один нейрон, расположенный в спинном мозге. Такая нервная клетка, управляющая двигательными функциями, называется мотонейроном, а вместе с теми мышечными волокнами, которые ей подчинены, она составляет двигательную единицу. Это элементарная единица морфофункционального устройства скелетных мышц. Волокна I типа, которые относятся к «медленным», иннервируются «медленными» мотонейронами, волокна II типа — «быстрыми». В составе каждой двигательной единицы все волокна одного типа.

Подавляющее большинство мышц являются смешанными, состоящими из волокон I и II типов в различных пропорциях. Соотношения типов волокон достаточно устойчивы и определяются генетическими факторами. От этих соотношений зависят, например, достижения человека в том или ином виде спорта или в другой деятельности, где успех определяется возможностями мышц.

Онтогенез мышечных волокон

Эмбриональный период. Формирование мышечной ткани начинается на 4—6-й неделе внутриутробного развития. В это время формируются так называемые миотрубки — первичные мышечные волокна. Несколько позже в мышцы прорастают длинные отростки (аксоны) мотонейронов спинного мозга. С этой стадии начинается синхронное формирование нервно-мышечного аппарата, причем основные индуктивные влияния осуществляются нервными элементами. Процессы дифференциации (т.е. появление разных типов) мышечных волокон связаны в первую очередь с развитием мотонейронов спинного мозга. Это происходит на 6—7-м месяце внутриутробной жизни, и ребенок рождается с мышцами, уже частично прошедшими этап первичной дифференцировки. Постнатальное развитие. К моменту рождения количество волокон, включившихся в первый этап дифференциации, составляет в среднем 43 \% (рис. 36). Дифференцировочные процессы резко усиливаются в возрасте от 1 до 2 лет. К концу этого срока уже можно выделить волокна с «быстрым» миозином (например, в четырехглавой мышце бедра их 15\%), с «медленным» (61 \%) и с «промежуточным» (24 \%).

В возрасте от 5 до 10 лет в соотношениях между волокнами различного типа устанавливается относительная стабильность, но затем в возрасте 11 — 12 лет наступает волна пубертатных перестроек. Это проявляется в увеличении числа волокон с «быстрым» миозином (тип ПВ). В возрасте 14 лет наблюдается увеличение относительного количества волокон I типа. На этом этапе все мышечные структуры резко увеличивают темпы роста.

К 17—18 годам окислительные возможности мышечной ткани и относительное количество волокон I типа снижаются. Устанавливается дефинитивное, характерное для взрослых, соотношение мышечных волокон разного типа. К этому возрасту достигают свойственного взрослым уровня и поперечные размеры мышечных волокон.

Старение (70 лет и старше) приводит к значительным изменениям мышечных структур. К этому возрасту снижается число «сильных» волокон

НОВОРОЖДЕННЫЙ МАЛЬЧИК 4 ГОДА

МАЛЬЧИК 7 ЛЕТ ПОДРОСТОК 12 ЛЕТ

ПОДРОСТОК 14 ЛЕТ ЮНОША 17 ЛЕТ

3

Рис. 36. Возрастные изменения волоконного состава скелетных мышц

(m. quadriceps femori) 1 — волокна типа I; 2 — волокна типа IIА; 3 — волокна типа IIВ

типа IIВ и более половины объема мышцы составляют наиболее универсальные промежуточные волокна типа IIА. Дифференцировка скелетных мышц — сложный многоэтапный процесс, в котором уровень дефинитивной (зрелой) организации мышечных структур достигается только после завершения полового созревания. В процессе онтогенеза развиваются не отдельные мышечные волокна, а суперструктуры — двигательные единицы, в которых изменение состояния мышечных волокон определяется в первую очередь развитием соответствующих мотонейронов.

Динамика роста скелетных мышц

Мышцы в онтогенезе растут иначе, чем другие ткани: если у большинства этих тканей по мере развития снижаются темпы роста, то у мышц максимальная скорость роста приходится на заключительный пубертатный скачок роста. В то время как, например, относительная масса мозга у человека от рождения до взрослого состояния снижается с 10 до 2 \%, относительная масса мышц возрастает с 22 до 40 \%.

На рис. 37 показаны константы скорости роста мышц верхних и нижних конечностей у мальчиков 7—17 лет. В возрасте 7—8 лет мышцы верхних и нижних конечностей растут относительно медленно. В возрастном интервале 8—9 лет скорости роста увеличиваются. Это относится в особенности к мускулатуре рук. Затем в возрасте 10—11 лет интенсивность ростовых процессов резко понижается. На 12-летний возраст приходится увеличение скорости роста мышц рук (пубертатный рост начинается с верхних конечностей). В 12—13 лет интенсивно растет мускулатура ног.

Рис. 37. Скорость роста массы тела и мышц конечностей у мальчиков

школьного возраста

В 13—14 лет опять отмечается торможение роста мышц ног, явно связанное с первой фазой пубертатных дифференцировок мышечных волокон. Вторая фаза этого процесса приходится на 16 лет, когда вновь тормозится скорость роста. На рис. 37 приведена и динамика константы скорости роста массы тела обследованных. Видно, что она в значительной степени отражает изменения мышечной массы.

Работа мышц

Любое движение, которое совершает человек, происходит за счет сокращения его мышц. Сокращаясь, мышцы приводят в действие систему рычагов, из которых состоит скелет, за счет их перемещения и происходит движение рук, ног, туловища, головы, каждого пальца и т.д. Из школьного курса физики известно: для того чтобы какое-либо тело начало двигаться, необходимо к нему приложить силу, а результат перемещения представляет собой работу. Например, если гиря массой 1 кг поднята на высоту 1 м, то совершена работа 1 кГм (килограммометр). Сокращение мышц позволяет перемещать в пространстве части тела и грузы, т. е. выполнять мышечную работу.

Виды мышечной работы. Между физической работой и мышечной работой есть одно важное различие. Если груз находится на какой-то поверхности и давит на нее, но не перемещается, то с точки зрения физики никакой работы при этом не совершается. Если же этот груз лежит, например, на ладони, и также никуда не перемещается, мышечная работа все равно совершается, только эта работа связана не с перемещением, а с удержанием груза. Принято разделять мышечную работу на динамическую (перемещение в пространстве) и статическую (удержание в пространстве). Если человек просто стоит, то и тогда мышцы ног и туловища выполняют статическую работу. Всякая двигательная активность осуществляется за счет чередования динамической и статической работы мышц.

Для того чтобы совершилась динамическая работа, необходимо, чтобы сократившаяся мышца укоротилась. Тогда она сдвинет, приблизит друг к другу те элементы скелета, к которым прикреплена с помощью сухожилий своими концами. Например, если человек сгибает руку в локте, то при этом сокращается и укорачивается двуглавная мышца плеча, подтягивая дальний конец предплечья, к которому прикреплено сухожилие, ближе к плечу. Внутримышечное давление при этом почти не меняется, а мышца сильно изменяется в форме и размере. Такой режим сокращения мышцы называется изотоническим (от лат. «изо» — постоянный, одинаковый; тонус — давление).

Совсем иначе работает мышца при статической нагрузке. Если удерживать на ладони вытянутой руки груз, то будет сокращаться та же двуглавая мышца плеча, но при этом ее длина не изменится (иначе бы предплечье, кисть и груз начали перемещаться), а внутримышечное давление сильно возрастет. Такой режим сокращения мышцы называется изометрическим («метрос» — размер, длина). В ряде случаев мышцы работают в смешанном режиме, одновременно укорачиваясь и развивая значительное внутримышечное давление. Такой смешанный режим работы мышцы называется плеометрическим (от «плео» — полный, многочисленный).

Для организма важен не только объем работы, но и интенсивность, с которой она производится. В тех случаях, когда работа может быть точно измерена, показателем интенсивности является мощность, т.е. количество работы, выполняемой в единицу времени.

Зоны мощности. Мощность (интенсивность) совершаемой человеком мышечной работы никогда не равна нулю, так как даже лежа, в полном покое, человек непрерывно совершает работу, связанную с поддержанием позы, у него сокращаются дыхательные мышцы, многие мелкие мышцы. Однако мощность мышечной работы не может увеличиваться беспредельно: у каждого человека есть определенный максимальный уровень интенсивности, превысить который человек не может (как невозможно, например, сдвинуть за счет мускульной силы стену кирпичного здания или многотонную глыбу). Диапазон между минимальным и максимальным уровнем интенсивности мышечной работы называется функциональным диапазоном скелетных мышц. Этот функциональный диапазон не является однородным и состоит из отдельных зон мощности. Чем выше мощность работы, тем меньше время, в течение которого эта мощность может поддерживаться. В зоне умеренной мощности работа может продолжаться от нескольких часов до получаса. В зоне большой мощности длительность работы не превышает 30 мин. В зоне субмаксимальной мощности длительность работы колеблется от 3 мин до 30 с. В зоне максимальной мощности время работы может быть 30 с или меньше.

Для каждой из зон мощности характерны свои, специфические особенности энергетического и вегетативного обеспечения мышечной работы. Так, в зоне умеренной мощности работа обеспечивается почти исключительно аэробными механизмами, в сокращениях принимают участие главным образом «медленные» двигательные единицы, входящие в их состав мышечные волокна получают энергию благодаря окислению углеводов и жиров в митохондриях, поэтому здесь крайне важна бесперебойная доставка достаточного количества кислорода. В зоне максимальной мощности работают в основном волокна типа IIА, которые обладают большой мощностью и большим запасом креатинфосфата. В зоне субмаксимальной мощности преимущественно активированы волокна типа IIВ, для которых главным источником энергии является анаэробный гликолиз. Они не зависят непосредственно от поставки кислорода, но в процессе работы вырабатывают большое количество молочной кислоты, которую необходимо удалить, чтобы не произошло закисление внутренней среды организма. Эта задача решается в организме за счет активации окислительных процессов в печени, не сокращающихся мышцах и некоторых других органах. Зона большой мощности характеризуется смешанным энергообеспечением, т.е. совместным функционированием аэробного и анаэробно-гликолитического источников энергии. Работа в этой зоне обеспечивается сокращением волокон обоих типов.

Структура зон мощности определяется объективными законами сокращения мышц, а также зависит от индивидуальных, половых, возрастных особенностей. Так, в период от 7 до 17 лет относительная ширина зон мощности и их соотношение между собой значительно меняется (рис. 38). С возрастом расширяется весь функциональный диапазон, особенно за счет увеличения зон большой, субмаксимальной и максимальной мощности. О физиологических причинах этих возрастных изменений будет сказано ниже.

Экономичность мышечной работы. Согласно закону сохранения энергии, для того чтобы выполнить любую работу, необходимо затратить пропорциональное количество энергии. При этом затраты энергии всегда значительно больше, чем объем выполненной работы. Отношение выполненной работы к затраченной энергии называется коэффициентом полезного действия и выражается в процентах.

взрослый

Рис. 38. Возрастные изменения функционального диапазона скелетных мышц и зон мощности

Коэффициент полезного действия (КПД) характеризует экономичность мышечной работы и очень существенно варьирует в зависимости от вида и условий деятельности (табл.12). Для сравнения здесь же приведены КПД некоторых технических устройств, созданных человеком за последние 200 лет.

Следует иметь ввиду, что КПД системы есть произведение частных КПД всех элементов системы. КПД организма при мышечной работе представляет собой произведение следующих частных КПД:

1) КПД мышечного сокращения — 80 \%;

2) КПД ресинтеза макроэргов — 90 \%;

3) КПД транспортных систем организма — 60 \%;

4) КПД биомеханических структур организма — 80\%.

Интенсивность нагрузки, при которой отмечается самый высокий КПД мышечной работы характеризует зону экономичных режимов мышечной деятельности. Эта зона расположена между зонами умеренной и большой мощности. Работа такой интенсивности наиболее благоприятна для поддержания функциональных возможностей человека, но ее тренировочный эффект невелик: она оптимальна для разминки и восстановительных упражнений после напряженной физической нагрузки.

Всякий нормальный человек в естественных условиях произвольной деятельности выбирает такую интенсивность движений, которая соответствует зоне экономичных режимов (принцип энергетического оптимума Ньюбар-Контини). Это правило справедливо для здоровых людей в возрасте от 6 до 70 лет. Однако с годами у человека меняется интенсивность, соответствующая зоне экономичных режимов. Поэтому при проведении физкультурных занятий в смешанных возрастных группах (например, в условиях туристических походов, массовых забегов и т.п.) не всегда удается выбрать такой темп движений, который был бы одинаково оптимален для маленьких и больших. Это необходимо учитывать.

Таблица 12

КПД различных движителей и скелетных мышц человека в разных условиях деятельности

Движитель

Вид деятельности (род работы), техническое средство

КПД,

\%

Паровая машина

Паровоз, паровой молот и т.п.

5-8

Двигатель внутреннего сгорания

Автомобиль, поршневой самолет

20-25

Дизельный двигатель

Автомобиль, моторное судно, трактор

35-40

Ядерная энергетическая установка

Судовой энергоблок; АЭС

30

Реактивный двигатель

Реактивный самолет, ракета

15-20

Электродвигатель

Электрические приводы машин и механизмов

70-80

Скелетные мышцы человека

Скоростной бег, подъем штанги, прыжок

Бег на средние дистанции, игра в хоккей, большой теннис

Бег на длинные дистанции, лыжные гонки, велосипед (шоссе) Марафонский бег, прогулка

10-12

12-15

18-20 25-30

Энергетическое и вегетативное обеспечение мышечной работы

Затраты энергии при мышечной деятельности могут быть учтены и измерены достаточно полно. Энергетические затраты зависят от интенсивности и объема нагрузки. Суммарные энергозатраты складываются из непременных энергетических затрат на поддержание жизнедеятельности организма; энергетических затрат на обеспечение сокращения выполняющих работу скелетных мышц; дополнительных энергетических затрат на усиленную работу сердечно-сосудистой, дыхательной и других систем при мышечной деятельности; постоянных энергетических затрат на поддержание позы; нарастающих энергетических затрат на нормализацию внутренней среды организма, изменяющейся под воздействием мышечной нагрузки.

Только в отдельных случаях удается количественно оценить каждый из этих компонентов энергозатрат. Главный смысл изменений деятельности всех физиологических систем при мышечной работе — обеспечение необходимого уровня энергетических затрат в каждом из перечисленных компонентов.

Вегетативные системы. Физиологические системы организма, обеспечивающие его нормальную жизнедеятельность в условиях покоя и мышечной деятельности, называются вегетативными. К ним относятся дыхание, кровообращение, пищеварение, выделение и т.п. При мышечной работе активность всех вегетативных систем изменяется таким образом, чтобы создать наилучшие условия снабжения работающих мышц энергией, а также свести к минимуму те отрицательные сдвиги во внутренней среде организма, которые возникают вследствие интенсивных обменных процессов в мышцах. Соответствие активности вегетативных систем потребностям организма обеспечивается за счет нервной и гуморальной регуляции.

0 25 50 75 100

Напряженность работы, Вт

Рис. 39. Возрастные и половые различия зависимости частоты пульса от уровня нагрузки

Реакция вегетативных систем на нагрузку. Если нагрузка на мышцы постепенно увеличивается, т.е. растет мощность внешней механической работы, то соответственно увеличиваются потребление кислорода, скорость кровотока, вентиляция легких и т.п. Большинство показателей деятельности вегетативных систем организма линейно зависит от мощности нагрузки, т. е. увеличение мощности на некоторую конкретную величину приводит к соответствующему, всегда одинаковому, увеличению таких показателей, как, например, потребление кислорода, частота пульса и др. (рис. 39). Однако это справедливо только в том случае, если такие измерения производятся при работе в устойчивом состоянии, т. е. не менее чем через 2—3 мин после начала нагрузки или ее очередного повышения. Эти 2—3 мин необходимы организму для того, чтобы отрегулировать уровень активности вегетативных функций в соответствии с энергетическим запасом скелетных мышц.

Линейная зависимость между величиной нагрузки и показателями деятельности физиологических систем организма позволяет оценивать интенсивность нагрузки по величине частоты пульса или потребления кислорода, когда строгое измерение мощности работы невозможно. И наоборот, зная величину нагрузки, можно прогнозировать уровень активности той или иной физиологической системы. На этом основана, в частности, методика измерения «физической работоспособности при пульсе 170 уд/мин» (сокращенно — ФР170, или PWC170 — по первым буквам английских слов «физическая», «работа», «способность»). Эта методика такова: испытуемый выполняет поочередно два различных по нагрузке задания и оба раза у него измеряют частоту пульса в устойчивом состоянии, т.е. не ранее, чем через 3 мин после начала работы. Полученные величины отмечают на графике точками, а затем проводят через них прямую и находят точку ее пересечения с прямой, отражающей уровень частоты пульса 170 уд/мин. Опустив из точки пересечения перпендикуляр на ось абсцисс с нанесенными на ней величинами мощности нагрузки (рис. 40), получают результат, выраженный в единицах мощности. Это и будет значением PWCI70 . Вместо графического можно использовать способ расчета PWCI70 по формуле, основанной на уравнении прямой. Согласно рекомендациям Всемирной организации здравоохранения, тест PWCI70либо его аналог (PWCI50, PWCI30 и т.п.) проводится во всех случаях, когда необходимо определить физические кондиции человека и охарактеризовать его физическое здоровье.

Рис. 40. Схема графического определения PWCI70

f 0 — пульс при первой нагрузке; f n — пульс при второй нагрузке; О u N— мощность первой и второй нагрузки. Стрелки указывают величину PVC I70 на шкале мощности

Для детей и подростков школьного возраста определение PWC170 может быть несколько упрощено за счет того, что вместо двух нагрузок допустимо задавать лишь одну, но обязательно, чтобы частота пульса при этом достигала 140 уд/мин или более. Тогда второй точкой на графике можно отмечать значение пульса покоя. У дошкольников моложе 6 лет корректное измерение величины PWCI70 невозможно, поскольку они не могут поддерживать устойчивое состояние активности своих вегетативных функций.

Измерение PWCI70 — простой и эффективный способ оценки функциональных возможностей организма при работе в зонах умеренной и большой мощности, в которых и осуществляется главным образом жизнедеятельность организма. Хотя измеряемой величиной в этом тесте является частота пульса, оцениваются в комплексе все составляющие кислородно-транспортной системы организма. Отклонения от нормы в любой из важнейших систем — кровообращения, дыхания, двигательного аппарата — сразу же проявятся в значительно более низких показателях PWCI70. Напротив, почти любой вид тренированности приводит к существенному увеличению PWCI70.

Нелинейные зависимости. Линейная зависимость показателей активности вегетативных систем организма от мощности имеет место только в диапазоне нагрузок, где энергетическое обеспечение непосредственно связано с доставкой кислорода к работающим мышцам, т.е. в «аэробном» диапазоне (зоны умеренной и большой мощности). Если же заданная нагрузка лежит в зоне субмаксимальной или максимальной мощности, то линейной зависимости между показателями работы физиологических функций и уровнем нагрузки не наблюдается (рис. 41). В большинстве случаев показатели деятельности вегетативных систем растут по мере повышения мощности нагрузки до определенного предела, после которого их увеличение прекращается, а если мощность продолжает возрастать, то возможно даже снижение этих показателей. Такой уровень активности вегетативной функции, который может быть достигнут при самой интенсивной работе в аэробных условиях, называется максимальным. Если функция достигла своего максимального уровня, то дальнейшее увеличение мощности нагрузки может привести только к снижению показателя.

Рис. 41. Примеры нелинейных зависимостей параметров энергетического обмена от мощности мышечной работы

La — концентрация лактата в крови; Qo2 — скорость потребления кислорода

Некоторые показатели активности вегетативных функций в естественных условиях мышечной деятельности не могут достичь своего максимального уровня. Так, максимальная вентиляция легких возможна только при произвольном наиболее частом и глубоком дыхании. Другие функции, такие как частота пульса, объемная скорость кровотока и потребление кислорода, могут достичь максимума только в условиях мышечной деятельности. Максимальные уровни частоты пульса и потребления кислорода обычно достигаются при одинаковой нагрузке. Мощность такой нагрузки, при которой частота пульса и потребление кислорода достигают максимального уровня, называют критической. Нагрузки критической мощности очень трудоемки и не могут продолжаться долго (обычно не более 3—5 мин).

Аэробная производительность и аэробный диапазон. Величина максимального потребления кислорода (МПК) — один из главных показателей в физиологии мышечной деятельности. Физиологический смысл величины МПК состоит в том, что она отражает суммарную пропускную способность всех механизмов транспорта кислорода, начиная от транспорта газов в легких и кончая транспортом электронов в митохондриях скелетно-мышечных волокон. При этом, поскольку скорость поглощения кислорода пропорциональна мощности работы, которая может за счет этого выполняться, величину МПК называют еще «аэробной производительностью» организма.

Диапазон нагрузок от состояния покоя до критической мощности, при которой достигается МПК, называют «аэробным диапазоном». Хотя большая часть потребности организма в энергии при нагрузках в аэробном диапазоне действительно покрывается за счет использования кислорода, бескислородные (анаэробные) источники также обязательно участвуют в энергообеспечении мышечной работы, по крайней мере в период врабатывания.

Поддержание гомеостаза при мышечной нагрузке. Изменения внутренней среды, происходящие во время мышечной работы, требуют напряжения механизмов гомеостаза. Поскольку при нагрузке обменные процессы ускоряются во много раз, во столько же раз больше образуется разнообразных продуктов, подлежащих удалению из организма, а также метаболической воды. Одновременно резко увеличивается температура тела, поскольку вся энергия, освободившаяся в клетках и не превращенная в механическую работу, преобразуется в тепло, и это тепло нагревает организм. Учитывая, что в режиме МПК человек вырабатывает около 1200— 1500 Вт энергии, и лишь 1/5 ее часть реализуется в виде механической работы, можно себе представить, как быстро нагрелся бы организм, если бы не работали системы терморегуляции.

Физиологическая «стоимость» физической работы. Физическая работа, которую выполняет человек, отнюдь не идентична той механической работе, которая оценивается с помощью эргометрических методов. Ни интенсивность, ни объем внешней механической работы, которую может выполнить человек, сами по себе ничего не говорят о той физиологической «цене», которую платит организм при физической нагрузке. Под «физиологической ценой» нагрузки мы понимаем ту добавочную работу, которую вынуждены выполнять системы организма (в том числе в восстановительном периоде) для компенсации затрат на поддержание гомеостаза. Для ее оценки можно использовать некоторые показатели сердечной деятельности и потребления кислорода, зарегистрированные во время работы и в восстановительном периоде.

Возрастные этапы становления энергетики мышечной деятельности. Первый год жизни ребенка представляет собой период бурного становления мышечной функции и, разумеется, ее энергетического и вегетативного обеспечения. Этот этап продолжается до возраста 3 лет, после чего преобразования в мышцах тормозятся, и следующий этап начинается вместе с полуростовым скачком примерно в 5 лет. Важнейшим событием здесь является появление уже близких ко взрослому варианту типов мышечных волокон, хотя их соотношение еще является «детским», да и функциональные возможности вегетативных систем еще недостаточно велики. В школьном возрасте ребенок проходит еще целый ряд этапов, только на последнем из них достигая «взрослого» уровня регуляции, функциональных возможностей и энергетики скелетных мышц:

1-й этап — возраст от 7 до 9 лет — период поступательного развития всех механизмов энергетического обеспечения с преимуществом аэробных систем;

2-й этап — возраст 9—10 лет — период «расцвета» аэробных возможностей, роль анаэробных механизмов мала;

3-й этап — период от 10 до 12—13 лет — отсутствие увеличения аэробных возможностей, умеренное увеличение анаэробных возможностей, развитие фосфагенного и анаэробно-гликолитического механизмов протекает синхронно;

4-й этап — возраст от 13 до 14 лет — существенное увеличение аэробных возможностей, торможение развития анаэробно-гликолитического механизма энергообеспечения; фосфагенный механизм развивается пропорционально увеличению массы тела;

5-й этап — возраст 14—15 лет — прекращение увеличения аэробных возможностей, резкое увеличение емкости анаэробно-гликолитического процесса, развитие фосфагенного механизма, по-прежнему, пропорционально увеличению массы тела;

6-й этап — период от 15 до 17 лет — аэробные возможности растут пропорционально массе тела, продолжают быстро расти анаэробно-гликолитические возможности, значительно ускоряется развитие механизмов фосфагенной энергопродукции, завершается формирование дефинитивной структуры энергообеспечения мышечной деятельности.

На процессы созревания энергетических и вегетативных систем огромное влияние оказывает половое созревание, так как половые гормоны непосредственно влияют на метаболические возможности скелетных мышц. Аэробное энергообеспечение, достигающее расцвета еще до начала пубертата, на первых его стадиях даже несколько ухудшается, однако к возрасту 14 лет отмечается новый рост возможностей аэробных систем энергообеспечения. Это связано, в частности, с внутренними потребностями мышц, которым для последнего этапа дифференцировок требуются мощные окислительные системы. Анаэробное энергообеспечение резко активируется уже на начальных стадиях полового созревания, затем (III стадия) темп его совершенствования замедляется, а после достижения IV стадии полового созревания (15—16 лет у мальчиков, 13—14 лет у девочек) наблюдается бурный рост анаэробных возможностей, особенно у юношей. Девушки в этот период уже сильно отличаются от юношей по характеру и уровню развития мышечной энергетики.

Вопросы и задания

1. Расскажите о мышечных волокнах и их онтогенезе.

2. Какова динамика роста мышц?

3. Расскажите о видах мышечной работы. Что такое зоны мощности?

4. Перечислите функции вегетативных систем. Какова их роль в обеспечении мышечной работы?

5. Какие этапы становления энергетики мышечной деятельности вы знаете?

Возрастная физиология

Возрастная физиология

Обсуждение Возрастная физиология

Комментарии, рецензии и отзывы

Глава 10. мышечная деятельность и физические возможности ребенка: Возрастная физиология, М.М. Безруких, 2002 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон В учебном пособии представлены современные концепции онтогенеза человека с учетом новейших достижений антропологии, анатомии, физиологии, биохимии, нейро- и психофизиологии и т.п. Рассмотрены морфофункциональные особенности ребенка на основных этапах возр