2.29. собственные векторы и собственные значения матрицы

2.29. собственные векторы и собственные значения матрицы: Справочник по математике для экономистов, В.И. Ермаков, 2009 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон Содержит материал, позволяющий анализировать экономические задачи и осуществлять расчеты. Отражены разделы линейной алгебры, математического программирования, сетевое программирование и планирование, обработка результатов измерений, статистический анализ.

2.29. собственные векторы и собственные значения матрицы

Число X называется собственным значением (или характеристическим числом) квадратной матрицы А порядка п, если можно подобрать такой и-мерный ненулевой вектор х, что Ах = Хх.

«1« «2л

«п

«21

Множество всех собственных значений матрицы А совпадает с множеством всех решений уравнения А ХЕ = О, где X — независимая переменная. Если раскрыть определитель А ХЕ, то получится многочлен и-й степени относительно X:

X

— X

А ХЕ =

«лл

"лі "л2

= апХ" + ап_хХп~х +... + ахХ + а„.

Этот многочлен называется характеристическим многочленом матрицы А. Его коэффициенты ап, ап1, ...,а0 зависят от элементов

матрицы А. Отметим, что ап = (-1)", а0 = А. Уравнение А ХЕ = О называется характеристическим уравнением матрицы А.

Ненулевой вектор х называется собственным вектором квадратной матрицы А, принадлежащим ее собственному значению X, если Ах = Хх.

Множество всех собственных векторов матрицы А, принадлежащих ее собственному значению X, совпадает с множеством всех ненулевых решений системы однородных уравнений (А ХЕ)х = О, записанной в векторно-матричной форме.

О Пример. Найти собственные значения и собственные векторы матрицы

< ( 1 А А =

1-1 4 J

= Х2-5Х + 6 = 0.

А-ХЕ =

Запишем характеристическое уравнение матрицы: 1-Х 2 -1 4-Х

Его корни Хх 2, Х2 3 являются собственными значениями матрицы А. Найдем собственные векторы, принадлежащие найденным собственным значениям. Собственный вектор, принадле83

жащий собственному значению Х1 2, является ненулевым решением системы

(А 2Е)х =

или

*2J

М 2Л(х^

-1 2

= о,

■Ху + 2х2 = 0, Ху + 2х2 = 0.

(2Л

Тогда Xj = 2, х2 = 1 — ненулевое решение и, значит, собственный вектор.

— искомый

Аналогично находим собственный вектор

матрицы А, при-

надлежащий собственному значению А,2 = 3. •

Число различных собственных значений квадратной матрицы не превышает ее порядка.

Собственные векторы квадратной матрицы, принадлежащие ее различным собственным значениям, линейно независимы.

Ортогональная матрица может не иметь действительных собственных значений, в то время как симметрическая матрица всегда имеет действительное собственное значение.

Собственные векторы симметрической матрицы, принадлежащие различным собственным значениям, ортогональны.

Справочник по математике для экономистов

Справочник по математике для экономистов

Обсуждение Справочник по математике для экономистов

Комментарии, рецензии и отзывы

2.29. собственные векторы и собственные значения матрицы: Справочник по математике для экономистов, В.И. Ермаков, 2009 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон Содержит материал, позволяющий анализировать экономические задачи и осуществлять расчеты. Отражены разделы линейной алгебры, математического программирования, сетевое программирование и планирование, обработка результатов измерений, статистический анализ.