1.1. химическое загрязнение атмосферы

1.1. химическое загрязнение атмосферы: Основы безопасности жизнедеятельности и первой медицинской помощи, Р. И. Айзмана, 2002 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон Задача пособия — формирование навыков оказания помощи людям в различных опасных ситуациях.

1.1. химическое загрязнение атмосферы

Человек загрязнял атмосферу тысячелетиями, однако последствия употребления огня, которым он пользовался весь этот период, были незначительными. Получаемое тепло ценилось человеком выше, чем чистый воздух. Начальное загрязнение воздуха не представляло проблемы, ибо люди обитали небольшими группами, сохраняя нетронутой природную среду. И даже значительное сосредоточение людей на сравнительно небольших территориях не сопровождалось серьезными последствиями. За последние 100 лет ситуация значительно ухудшилась.

В настоящее время выделяются три основные источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха в разных регионах различна. Общепризнано, что наиболее сильно загрязняют воздух теплоэлектростанции, вместе с дымом выбрасывающие в воздух сернистый и углекислый газ, а также металлургические предприятия, особенно цветной металлургии, в результате деятельности которых в воздух попадают оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка. В этот список можно поместить, кроме того, химические и цементные заводы.

Атмосферные загрязнители подразделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, сернистый газ окисляется в атмосфере до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом — в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы — образуются другие вторичные загрязнители.

Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 170 \% ежегодно добываемого твердого и жидкого топлива.

Вредные примеси пирогенного происхождения.

Наибольший ущерб из них наносят следующие:

Оксид углерода. Образуется при неполном сгорании углеродистых веществ. В воздух попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Активно реагирует с составными частями атмосферы, способствует повышению температуры на планете и созданию парникового эффекта. Ежегодно поступает в атмосферу не менее 1 250 млн т этого газа.

Сернистый ангидрид. Выделяется в процессе сгорания серосодержащего топлива или переработки сернистых руд (до 170 млц т в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составляет 65 \% от общемирового выброса.

Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет тем самым заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 11 км от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшимися в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также теплоэлектростанции (ТЭС) ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

Сероводород и сероуглерод. Поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара; коксохимические, нефтеперерабатывающие, а также нефтяные промыслы. В атмосфере при взаимодействии с другими загрязнителями сероводород и сероуглерод подвергаются медленному окислению до серного ангидрида.

Оксиды азота. Основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксидов азота, поступающих в атмосферу, составляет около 20 млн т в год.

Соединения фтора. Источники загрязнения — предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторсодержащие вещества поступают в атмосферу в виде газообразных соединений — фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

Соединения хлора. Поступают в атмосферу с химических предприятий, производящих соляную кислоту, хлорсодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 11 т передельного чугуна выделяется, кроме 12,7 кг сернистого газа, еще 14,5 кг пылевых частиц, которые включают соединения мышьяка, фосфора, сурьмы, свинца, а также пары ртути и редких металлов, смоляные вещества и цианистый водород.

 

Аэрозольное загрязнение атмосферы.

Аэрозоли — это твердые или жидкие частицы, находящиеся в воздухе во взвешенном состоянии. Твердые компоненты аэрозолей в ряде случаев особенно опасны для живого организма, а у людей они вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 11-51 мкм. В атмосферу Земли ежегодно поступает около 11м3 пылевидных частиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей. Сведения о некоторых источниках техногенной пыли приведены ниже:

Производственный процесс

Выброс пыли, млн т/год

Сжигание каменного угля

93,6

Выплавка чугуна

20,21

Выплавка меди (без очистки)

6,23

Выплавка цинка

0,18

Выплавка олова (без очистки)

0,004

Выплавка свинца

0,13

Производство цемента

53,37

Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, а также обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в них обнаруживаются соединения кремния, кальция и углерода, реже — оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена; встречается асбест.

Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Такая пыль образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и подобных предприятиях.

Постоянными источниками аэрозольного загрязнения являются промышленные отвалы — искусственные насыпи из отходов предприятий перерабатывающей промышленности, а также ТЭС. Источником пыли и ядовитых газов служат и массовые взрывные работы. Так, в результате одного среднего по массе взрыва (1250-3000 т взрывчатых веществ) в атмосферу выбрасывается около 12 тыс. м3 условного оксида углерода и более 1150 т пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств — измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов — всегда сопровождаются выбросами пыли и других вредных веществ в атмосферу.

К атмосферным загрязнителям относят и углеводороды — насыщенные и ненасыщенные. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы — часто в виде аэрозольных частиц.

При определенных погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия — расположение слоя более холодного воздуха под теплым, что препятствует движению воздушных масс и задерживает перенос примесей вверх. Вредные выбросы при этом сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что является одной из причин образования ранее не известного в природе фотохимического тумана.

Фотохимический туман (смог).

 Это многокомпонентная смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: если в атмосфере высока концентрация оксидов азота, углеводородов и других загрязнителей, при интенсивной солнечной радиации и безветрии, а также в случаях очень слабого обмена воздуха в приземном слое при мощной повышенной инверсии в течение не менее суток. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ.

Такие условия создаются чаще в июне сентябре и реже — зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. При соединении атомарного кислорода с молекулярным кислородом возникает озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота, в свою очередь, — в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи, образуя осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. В ночное время этот процесс прекращается.

Озон, в свою очередь, вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме образуют характерные для фотохимического тумана оксиданты. Последние являются источником так называемых свободных радикалов, отличающихся особой реакционной способностью. Они крайне опасны, поскольку воздействуют на дыхательную и кровеносную системы организма человека и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

Проблема контролирования выброса в атмосферу загрязняющих веществ промышленными предприятиями. Степень загрязнения воздуха основными загрязняющими веществами находится в прямой зависимости от промышленного развития города. Максимальные концентрации характерны для городов с численностью населения более 500 тыс. жителей. Загрязнение воздуха специфическими веществами зависит от вида промышленности, развитой в городе. Если в крупном городе размещены предприятия нескольких отраслей промышленности, то создается очень высокий уровень загрязнения воздуха.

Чтобы по результатам наблюдений определить качество воздуха, измеренные значения концентраций сравнивают с максимальной разовой предельно допустимой концентрацией и определяют число случаев, когда были превышены ПДК (см. разд. 1.5).

Загрязнение атмосферы в результате работы подвижных источников выбросов. В последние десятилетия в связи с быстрым развитием автотранспорта и авиации существенно увеличилась доля выбросов, поступающих в атмосферу от подвижных источников: грузовых и легковых автомобилей, тракторов, тепловозов и самолетов. Согласно оценкам, в городах на долю автотранспорта приходится (в зависимости от уровня развития в данном городе промышленности и числа автомобилей) от 30 до 70 \% общей массы выбросов.

Автотранспорт. Основной вклад в загрязнение атмосферы вносят автомобили, работающие на бензине (на их долю приходится около 75 \%), самолеты (примерно 5 \%), автомобили с дизельными двигателями (около 4 \%), тракторы и другие сельскохозяйственные машины (около 4 \%), железнодорожный и водный транспорт (примерно 2 \%).

Наибольшее количество загрязняющих веществ выбрасывается при разгоне автомобиля, а также при движении с малой скоростью. Относительная доля (от общей массы выбросов) углеводородов и оксида углерода наиболее высока при торможении и на холостом ходу, а доля оксидов азота — при разгоне. Из этих данных следует, что автомобили особенно сильно загрязняют воздушную среду при частых остановках и при движении с малой скоростью.

Создаваемые в городах системы движения в режиме «зеленой волны», которые существенно сокращают число остановок транспорта на перекрестках, призваны снизить загрязнение атмосферного воздуха. Большое влияние на качество и количество выбросов примесей оказывает режим работы двигателя, в частности, соотношение между массами топлива и воздуха, момент зажигания, качество топлива, отношение поверхности камеры сгорания к ее объему и др. При увеличении отношения массы воздуха и топлива, поступающих в камеру сгорания, сокращаются выбросы оксида углерода и углеводородов, но возрастает выброс оксидов азота.

Несмотря на то, что дизельные двигатели более экономичны, и таких веществ, как СО, NО2, выбрасывают не более, чем бензиновые, они дают существенно больше дыма (преимущественно несгоревшего углерода, который, к тому же, обладает неприятным запахом, создаваемым некоторыми несгоревшими углеводородами). А если учесть, что дизельные двигатели производят сильный шум, становится понятно, что они воздействуют на здоровье человека гораздо больше, чем бензиновые двигатели.

Двигатели самолетов. Хотя суммарный выброс загрязняющих веществ двигателями самолетов сравнительно невелик (для города, страны), в районе аэропорта эти выбросы вносят определяющий вклад в загрязнение среды. К тому же, турбореактивные двигатели (как и дизельные) при посадке и взлете выбрасывают хорошо заметный глазом шлейф дыма.

Согласно полученным оценкам, значительная часть топлива тратится на выруливание самолета к взлетно-посадочной полосе (ВПП) перед взлетом и на заруливание с ВПП после посадки (по времени в среднем — около 22 мин). При этом доля несгоревшего и выброшенного в атмосферу топлива при рулении намного больше, чем в полете. Существенного уменьшения выбросов можно добиться, помимо улучшения работы двигателей (распыление топлива, обогащение смеси в зоне горения, использование присадок к топливу, впрыск воды и др.), путем сокращения времени работы двигателей на земле и числа работающих двигателей при рулении (только за счет последнего достигается снижение выбросов в 3-8 раз).

Уже в течение 10—15 лет большое внимание уделяется исследованию эффектов, которые могут возникнуть в связи с полетами сверхзвуковых самолетов и космических кораблей. Эти полеты сопровождаются загрязнением стратосферы оксидами азота и серной кислотой (сверхзвуковые самолеты), а также частицами оксида алюминия (транспортные космические корабли). Поскольку перечисленные загрязняющие вещества разрушают озон, то первоначально создалось мнение (подкрепленное соответствующими модельными расчетами), что планируемый рост числа полетов сверхзвуковых самолетов и транспортных космических кораблей приведет к существенному уменьшению содержания озона, со всеми последующими губительными воздействиями ультрафиолетовой радиации на биосферу Земли. Однако тщательный анализ этой проблемы позволил сделать заключение о слабом влиянии выбросов сверхзвуковых самолетов на состояние стратосферы.

Более сильное воздействие на озонный слой и глобальную температуру воздуха могут оказать хлорфторметаны (ХФМ), например фреон-11 и фреон-12 — газы, выделяющиеся, в частности, при испарении аэрозольных препаратов. Поскольку ХФМ очень инертны, то они распространяются и долго живут не только в тропосфере, но и в стратосфере, обладая довольно сильными полосами поглощения в окне прозрачности атмосферы.

В заключение можно отметить, что все эти антропогенные эффекты перекрываются в глобальном масштабе естественными факторами — например, загрязнением атмосферы вулканическими извержениями.

Шумы.

 Это одно из вредных для человека загрязнений атмосферы. Раздражающее воздействие звука (шума) на человека зависит от интенсивности, спектрального состава и продолжительности воздействия. Шумы со сплошными спектрами действуют менее раздражающе, чем шумы узкого интервала частот. Наибольшее раздражение вызывает шум в диапазоне частот 3000-5000 Гц.

Работа в условиях повышенного шума на первых порах вызывает быструю утомляемость, обостряет слух на высоких частотах. Затем человек как бы привыкает к шуму, чувствительность к высоким частотам резко падает, начинается ухудшение слуха, которое постепенно переходит в тугоухость и глухоту. При интенсивности шума 145-140 дБ возникают вибрации в мягких тканях носа и горла, а также в костях черепа и зубах; если интенсивность превышает 140 дБ, то начинают вибрировать грудная клетка, мышцы рук и ног; появляются боль в ушах и в голове, крайняя усталость и раздражительность. При уровне шума свыше 160 дБ может произойти разрыв барабанных перепонок.

Однако шум губительно действует не только на слуховой аппарат, но и на центральную нервную и сердечно-сосудистую системы человека, служит причиной многих других заболеваний.

Мощным источником шума являются вертолеты и самолеты, особенно сверхзвуковые. Наиболее острый характер проблема шума приобрела в связи с эксплуатацией сверхзвуковых самолетов. С ними связаны шумы, звуковой удар и вибрация жилищ вблизи аэропортов. Современные сверхзвуковые самолеты порождают шумы, интенсивность которых значительно превышает предельно допустимые нормы.

Влияние загрязнения атмосферы на человека,

растительный и животный мир.

Все загрязняющие атмосферный воздух вещества в большей или меньшей степени оказывают отрицательное влияние на здоровье человека. Эти вещества попадают в организм преимущественно через систему дыхания. Органы дыхания страдают от загрязнения непосредственно, поскольку до 50 \% частиц радиусом 0,01-0,1 мкм, проникающих в легкие, осаждаются в них.

В организме частицы вызывают токсический эффект, поскольку они: а) токсичны (ядовиты) по своей химической или физической природе; б) служат помехой для одного или нескольких механизмов, с помощью которых нормально очищается респираторный (дыхательный) тракт; в) являются носителями поглощенного организмом ядовитого вещества.

В некоторых случаях воздействие одних из загрязняющих веществ в комбинации с другими приводит к более серьезным расстройствам здоровья, чем воздействие каждого из них в отдельности. Большую роль играет продолжительность воздействия.

Статистический анализ позволил достаточно надежно установить зависимость между уровнем загрязнения воздуха и такими заболеваниями, как поражение верхних дыхательных путей, сердечная недостаточность, бронхит, астма, пневмония, эмфизема легких, а также болезни глаз. Резкое повышение концентрации примесей, сохраняющееся в течение нескольких дней, увеличивает смертность людей пожилого возраста от респираторных и сердечно-сосудистых заболеваний.

В декабре 1930 г. в долине реки Маас (Бельгия) отмечалось сильное загрязнение воздуха в течение 3 дней; в результате сотни людей заболели, а 60 человек скончались — это более, чем в 10 раз выше средней смертности. В январе 1931 г. в районе Манчестера (Великобритания) в течение 9 дней наблюдалось сильное задымление воздуха, которое явилось причиной смерти 592 человек. В январе 1956 г. около 1000 лондонцев погибли в результате продолжительного задымления. Большинство из тех, кто умер неожиданно, страдало бронхитом, эмфиземой легких или сердечно-сосудистыми заболеваниями.

Оксид углерода (СО). Концентрация этого газа, превышающая предельно допустимую, приводит к физиологическим изменениям в организме человека. Объясняется это тем, что СО — исключительно агрессивный газ, легко соединяющийся с гемоглобином. При соединении образуется карбоксигемоглобин, повышение содержания которого в крови (сверх нормы, равной 0,4 \%) сопровождается:

• ухудшением остроты зрения и способности оценивать длительность интервалов времени;

• нарушением некоторых психомоторных функций головного мозга (при содержании 2-5 \%);

• изменениями деятельности сердца и легких (при содержании более 5 \%);

• головными болями, сонливостью, спазмами, нарушениями дыхания и в некоторых случаях смертью (при содержании более 10 \%).

 Степень воздействия оксида углерода на организм зависит не только от его концентрации, но и от времени пребывания (экспозиции) человека в загазованном СО воздухе. К счастью, образование карбоксигемоглобина в крови — процесс обратимый: после прекращения вдыхания СО начинается его постепенный вывод из крови; у здорового человека содержание СО в крови каждые 3-4 ч уменьшается в 2 раза.

Оксид углерода — очень стабильное вещество, время его жизни в атмосфере составляет 1-А мес. При ежегодном поступлении 350 млн т концентрация СО в атмосфере должна была бы увеличиваться примерно на 0,03 млн т/год. Однако этого, к счастью, не наблюдается, чем человечество обязано, в основном, почвенным грибам, очень активно разлагающим СО (положительную роль играет также переход СО в СО2).

Диоксид серы (SO2) и серный ангидрид (SO3). В комбинации со взвешенными частицами и влагой оказывают наиболее вредное воздействие на живые организмы. SO2 — бесцветный и негорючий газ; в смеси с твердыми частицами (при концентрации дыма 150-200 мкг/м3) приводит к нарастанию симптомов затрудненного дыхания и обострению болезней легких, а при концентрации дыма 500—750 мкг/м3 резко увеличивается число больных и повышается количество смертельных исходов.

Оксиды азота и некоторые другие вещества. Оксиды азота (наиболее ядовит диоксид азота — NO2), соединяясь при участии ультрафиолетовой солнечной радиации с углеводородами (среди которых наибольшей реакционной способностью обладают олефины), образуют пероксилацетилнитрат (ПАН) и другие фотохимические окислители, в том числе пероксибензоилнитрат (ПБН), озон, перекись водорода, диоксид азота. Эти окислители — основные составляющие фотохимического смога, который часто возникает в сильно загрязненных городах, расположенных в низких широтах северного и южного полушарий.

Оценка скорости фотохимических реакций, приводящих к образованию ПАН, ПБН и озона, показывает, что в ряде южных городов летом в околополуденные часы (когда велик приток ультрафиолетовой радиации) эти скорости превосходят значения, при которых начинает образовываться смог. Так, в Алматы, Ереване, Тбилиси, Ашхабаде, Баку, Одессе и других городах при наблюдаемых уровнях загрязнения воздуха максимальная скорость образования СО достигла 0,70-0,86 мг/м3 в час, в то время как смог возникает уже при скорости 0,35 мг/м3 в час.

Наличие в составе ПАН диоксида азота и йодистого калия придает смогу коричневый оттенок. При высокой концентрации ПАН выпадает на землю в виде клейкой жидкости, губительно действующей на растительный покров.

Все окислители — в первую очередь ПАН и ПБН — сильно раздражают слизистую оболочку глаз и вызывают воспаление. В комбинации с озоном эти вещества раздражают носоглотку, приводят к спазмам сосудов, а при высокой концентрации (свыше 3-4 мг/м3) способствуют появлению сильного кашля.

Назовем некоторые другие загрязняющие воздух вещества, вредно действующие на человека. Установлено, что у людей, профессионально имеющих дело с асбестом, повышена вероятность раковых заболеваний. Бериллий оказывает вредное воздействие на дыхательные пути, а также на кожу и глаза. Пары ртути нарушают работу центральной нервной системы и почек. Поскольку ртуть может накапливаться в организме, то в конечном итоге ее воздействие приводит к расстройству умственных способностей человека.

 В городах вследствие увеличивающегося загрязнения воздуха неуклонно растет число больных, страдающих хроническим бронхитом, эмфиземой, раком легких, различными аллергическими заболеваниями.

Влияние радиоактивных веществ

 на растительный и животный мир.

Некоторые химические элементы радиоактивны: процесс их самопроизвольного распада с превращением в элементы с другими порядковыми номерами сопровождается излучением. При распаде радиоактивного вещества его масса с течением времени уменьшается. Теоретически вся масса радиоактивного элемента исчезает за бесконечно большое время. Периодом полураспада называется время, по истечении которого масса уменьшается вдвое. Варьируя в широких пределах, период полураспада составляет, для разных радиоактивных веществ, от нескольких часов до миллиардов лет.

Борьба с радиоактивным загрязнением среды может носить лишь предупредительный характер, поскольку не существует способов биологического разложения и других механизмов, позволяющих нейтрализовать этот вид заражения природной среды. Наибольшую опасность представляют радиоактивные вещества с периодом полураспада от нескольких недель до нескольких лет: этого времени достаточно для проникновения таких веществ в организм растений и животных.

Распространяясь по пищевой цепи (от растений к животным), радиоактивные вещества поступают в организм вместе с продуктами питания и могут накапливаться в количестве, способном нанести вред здоровью человека.

Наиболее опасные среди радиоактивных веществ — 90Sr и 137Cs — образуются при ядерных взрывах в атмосфере, а также поступают в окружающую среду с отходами атомной промышленности. Благодаря химическому сходству с кальцием 90Sr легко проникает в костную ткань позвоночных, тогда как 137Cs накапливается в мышцах.

Излучение радиоактивных веществ оказывает губительное воздействие на организм вследствие ослабления иммунитета, снижения сопротивляемости инфекциям. Результатом является уменьшение продолжительность жизни, сокращение показателей естественного прироста населения вследствие временной или полной стерилизации. Отмечено поражение генов, при этом последствия проявляются лишь в последующих — втором или третьем — поколениях.

Тяжесть последствий облучения зависит от количества поглощенной организмом энергии, излученной радиоактивным веществом (радиации). Единицей этой энергии служит 1 рад — это доза облучения, при которой 1 г живого вещества поглощает 10-5 Дж энергии.

Установлено, что при дозе, превышающей 1000 рад, наступает смерть; в случае получения дозы величиной 100 рад человек выживает, однако значительно возрастает вероятность возникновения онкозаболевания, а также полной стерилизации.

Наибольшее загрязнение вследствие радиоактивного распада вызвали взрывы атомных и водородных бомб, испытание которых особенно широко проводилось в 1954-1962 гг.

Второй источник радиоактивных примесей — атомная промышленность. Примеси поступают в окружающую среду при добыче и обогащении ископаемого сырья, использовании его в реакторах, переработке ядерного горючего в установках.

Наиболее серьезное загрязнение среды связано с работой заводов по обогащению и переработке атомного сырья. Для дезактивации радиоактивных отходов до их полной безопасности необходимо время, равное примерно 20 периодам полураспада (это около 640 лет для 137Cs и 490 тыс. лет для 239Ru). Вряд ли можно поручиться за герметичность контейнеров, в которых отходы хранятся в течение столь длительного времени.

Таким образом, хранение отходов атомной энергетики — это наиболее острая проблема охраны окружающей среды от радиоактивного заражения. Теоретически, правда, возможно создание атомных электростанций с практически нулевым выбросом радиоактивных примесей. Но в этом случае производство энергии на атомной станции оказывается существенно более дорогим, чем на тепловой электростанции.

Поскольку производство энергии, основанное на ископаемом топливе (уголь, нефть, газ), также сопровождается загрязнением среды, а запасы такого топлива ограничены, большинство исследователей, занимающихся проблемами энергетики и охраны среды, пришли к выводу: атомная энергетика способна не только удовлетворить возрастающие потребности общества в энергии, но и обеспечить охрану природной среды и человека лучше, чем это может быть осуществлено при производстве такого же количества энергии на основе химических источников (сжигания углеводородов). При этом особое внимание следует уделить мероприятиям, исключающим риск радиоактивного загрязнения среды (в том числе и в отдаленном будущем), в частности, необходимо обеспечить независимость органов по контролю за выбросами от ведомств, ответственных за производство атомной энергии.

Установлены предельно допустимые дозы ионизирующей радиации, основанные на следующем требовании: доза не должна превышать удвоенного среднего значения дозы облучения, которому человек подвергается в естественных условиях. При этом предполагается, что люди хорошо приспособились к естественной радиоактивности среды. Приходящая в среднем на каждого человека общая доза ионизирующего излучения, создаваемая радиоактивным фоном, составляет примерно 3-5 рад за 30 лет.

Известны группы людей, которые живут в районах с высокой радиоактивностью, значительно превышающей среднюю на нашей планете (так, в одном из районов Бразилии жители за год получают около 1600 мрад, что в 10-20 раз больше средней дозы облучения).

В среднем доза ионизирующей радиации, получаемой за год каждым жителем планеты, колеблется между 50 и 200 мрад. Последствия Чернобыльской аварии до сих пор сказываются на жизни миллионов граждан России, Украины и Беларуси, и международная помощь в решении порожденных ею долгосрочных проблем остается крайне необходимой. Об этом говорилось в отчете ООН «Последствия атомной аварии на Чернобыльской АЭС для жизни людей — стратегия восстановления».

В результате Чернобыльской аварии радиоактивному заражению подверглось 23 \% территории Беларуси, 5 \% территории Украины и 1,5 \% территории России. Уровень радиоактивного загрязнения этих территорий в отдельных местах значительно превышает естественную радиоактивность среды. От болезней, связанных с радиоактивным облучением в названных странах, погибло, по меньшей мере, 8000 человек. Было диагностировано около 2 000 случаев рака щитовидной железы. Около 200 000 человек продолжают проживать на территориях с высоким уровнем радиоактивного загрязнения. При этом отмечается очаговость зон радиоактивного загрязнения, т. е. участки с высоким уровнем радиоактивности соседствуют с незараженными участками.

Основы безопасности жизнедеятельности и первой медицинской помощи

Основы безопасности жизнедеятельности и первой медицинской помощи

Обсуждение Основы безопасности жизнедеятельности и первой медицинской помощи

Комментарии, рецензии и отзывы

1.1. химическое загрязнение атмосферы: Основы безопасности жизнедеятельности и первой медицинской помощи, Р. И. Айзмана, 2002 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон Задача пособия — формирование навыков оказания помощи людям в различных опасных ситуациях.