4.2. особенности геохимии поверхностных вод суши

4.2. особенности геохимии поверхностных вод суши: Основы биогеохимии, В.В.ДОБРОВОЛЬСКИЙ, 2003 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон Рассмотрены основные понятия биогеохимии как науки, приведен краткий обзор ис-тории ее развития. Изложены основные черты геохимии литосферы..

4.2. особенности геохимии поверхностных вод суши

Океан беспрестанно пополняется за счет стока воды с суши, который согласно данным М.И.Львовича (1986) равен примерно 44×103 м3/год. Следовательно, меньше чем за 35 тыс. лет в океан поступит столько воды, сколько в нем находится в настоящее время. Динамическое постоянство объема океана поддерживается испарением и переносом через атмосферу в парообразном состоянии 44×103 км3/год воды, выпадающей на сушу в виде атмосферных осадков. Ниже приведен годовой водный баланс Земли (по М.И.Львовичу, 1986):

Элементы водного баланса Объем, км3

Дренируемая часть суши:

осадки.........................................................................106000

речной сток................................................................ 44230

испарение................................................................... 61 770

Бессточная часть суши:

осадки ......................................................................... 7500

испарение................................................................... 7500

Мировой океан:

осадки .........................................................................411 600

приток речных вод..................................................... 44230

испарение...................................................................455 830

Земля в целом:

осадки.........................................................................525 100

испарение...................................................................525 100

Химический состав выпавших осадков при взаимодействии с растительностью и почвой изменяется под влиянием гумусовых кислот, метаболических выделений высших растений и почвенных микроорганизмов. Конечный продукт разрушения органического вещества — углекислый газ — хорошо растворяется в воде с образованием угольной кислоты. Все это усиливает растворяющую способность поверхностных вод по отношению к минеральному веществу земной коры. В то же время стекающая по поверхности суши вода захватывает частицы минерального вещества, преобразованного под влиянием жизнедеятельности организмов, и переносит их в форме взвеси. Таким образом, состав как растворимых соединений, так и тонких взвесей в значительной мере обусловлен жизнедеятельностью организмов.

Растворимые соединения в речном стоке. Речные воды создают мощный геохимический поток, играющий важную роль в общепланетарном массообмене между Мировой сушей и Океаном. Мобилизация химических элементов, включающихся в водную миграцию, происходит в результате деятельности живых организмов. Речные воды следует рассматривать как сложные растворы, содержащие дисперсные взвеси и соединения, находящиеся в истинно растворимом состоянии.

В речных водах различают следующие главные формы химических элементов:

1) простые и комплексные ионы;

2) нейтральные молекулы (обе группы форм имеют размер 2 — 3 нм и менее);

3) коллоидные частицы (размер менее 0,1 мкм), состоящие из устойчивых гумусовых веществ, аморфных продуктов разрушения глинистых минералов и оксидов железа;

4) высокодисперсные частицы (размер от 0,1 до 1 — 2 мкм), состоящие преимущественно из глинистых минералов;

5) крупные взвешенные частицы (размер от 2 — 3 до 10 мкм), представленные обломочными минералами.

Минерализация воды и количество дисперсных взвесей (мутность) в разных реках сильно варьируют. В соответствии с данными геохимика Д.Ливингстона (1963), средняя минерализация рек Мира принята равной 120 мг/л. Исходя из этой цифры и объема годового речного стока в 44×1015 л/год, количество растворенных соединений, ежегодно выносимых с суши, составляет 5,3×102 т. Согласно данным А. П. Лисицина (1983), среднее содержание взвешенных дисперсных частиц в континентальном стоке равно 500 мг/л. Следовательно, вынос тонкодисперсного вещества всеми реками равен 22×109 т/год, т.е. в 4,2 раза больше, чем растворимых соединений.

Соотношение масс растворимых соединений и твердых взвесей в речном стоке в значительной мере зависит от характера растительности суши. Факты свидетельствуют, что на протяжении геологической истории это соотношение неоднократно менялось.

На основании этого французский почвовед Г.Эрар (1956) разработал теорию биорексистазии. Эпохи биостазии (биологического павновесия) характеризуются широким распространением устойчивых лесных фитоценозов, препятствующих механической эрозии почв, но способствующих вовлечению химических элементов в водную миграцию в растворимых формах. В эпохи рексистазии биологическое равновесие нарушается, и площадь лесов сильно сокращается. Вследствие этого активизируются денудационно-эро-зионные процессы и в речном стоке преобладают твердые взвеси.

В составе растворимых соединений в речных водах преобладают анионы [НСО3]-, [SO4]2-, Cl-. В варьирующих микроколичествах находятся все остальные элементы.

Известны многочисленные попытки объяснить концентрацию рассеянных химических элементов в природных водах с помощью теории ионных растворов, причем в качестве главного рассматривался один фактор: ионный потенциал либо концентрация водородных ионов (рН), либо окислительно-восстановительный потенциал. Р.Гаррелс и Ф.Маккензи (1971) для объяснения распределения элементов в природных водах использовали физико-химические расчеты исходя из модели: неразбавленный раствор — осадок. В этом случае нахождение элемента в растворе зависит от сочетания окислительно-восстановительных и кислотно-щелочных условий, которые наглядно представлены на Eh — рН-диаграммах. Для процессов растворения — осаждения макрокомпонентов такой подход вполне приемлем, но для рассеянных элементов не всегда отвечает действительности. По этой причине наряду с попытками применить к природным водным растворам те или иные теории очень важно обобщить имеющиеся фактические данные.

В речных водах содержатся растворимые формы рассеянных элементов, не захваченные в биологический круговорот. Текучие воды на поверхности суши обычно имеют рН от 4,5 до 8,5. При таких значениях рН многие металлы (цинк, хром, медь, бериллий, свинец, кадмий, никель, кобальт и др.) могут находиться в растворенном состоянии, выпадать в осадок и вновь переходить в раствор. Но их фактическое содержание в природных водах так незначительно, что регулирующее действие рН не сказывается. Концентрация металлов в чистой воде часто ниже их содержания в растворах после осаждения гидроксидов. В отдельных случаях, когда образуются ничтожно малые количества нерастворимых гидроксидов металлов, они находятся в виде субколлоидных сгустков, которые не выпадают в осадок, а в состоянии разбавленных коллоидных растворов активно мигрируют. В то же время находящиеся в растворе элементы могут образовывать комплексные соединения с органическими веществами, сорбироваться гелями соединений макроэлементов (в первую очередь гидроксидами железа), высокодисперсными частицами глин и осаждаться в таких условиях, когда теоретически этого не должно быть.

Значительная часть рассеянных элементов присутствует в природных водах не в виде простых ионов, а в форме комплексных соединений. В этом случае устойчивость элемента в растворе сильно возрастает и не ограничивается теми кислотно-щелочными и окислительно-восстановительными условиями, в которых может находиться в растворе простой ион. Как показал В. В. Щербина (1972), образование неорганических комплексных соединений характерно для хрома, никеля, кобальта, меди, цинка, урана. При этом возникают соединения типа [Cu(NH3)2]+; [Cu(CO3)2]2-; [ZnQ3]-; [Zn(S04)2]2и др.

Весьма важное значение для водной миграции имеют комплексные органические, особенно внутрикомлексные (хелатные) соединения металлов. В этих соединениях ион металла имеет ионную и координационную связи с отдельными функциональными группами внутри молекулы. Ионная связь осуществляется обычно группами СООН, ОН, NH2, SO3H, координационная связь — группами —NH2, NH—N=, =NOH—, -ОН, =С=О, =S=0, =S—. В комплексообразовании принимают участие аминокислоты, ароматические соединения (полифенолы), кислоты жирного ряда, гетероциклические соединения типа хинолина, гуминовые и фульвокислоты (Якушевская И.В., 1973). Устойчивость комплекса зависит от поляризуемости катиона-комплексообразователя и органического соединения, реакции среды и концентрации рассеянного металла. Обычно комплексы устойчивы в слабокислых и нейтральных водах, при сильном возрастании рН они разрушаются. Наибольшая устойчивость хелатных соединений соответствует низкой концентрации металла, увеличение концентрации приводит к их разрушению.

Растворимые комплексные органические соединения металлов распространены очень широко. На территории лесных ландшафтов с кислыми почвами эти соединения являются преобладающей формой растворенных металлов. С усилением засушливости и соответственным повышением рН почвенных растворов и поверхностных вод значение комплексов уменьшается, хотя и остается достаточно высоким.

Геохимические и биоклиматические различия водосборных площадей и разнообразие форм рассеянных элементов обусловливают сильную вариацию их концентраций в речных водах. Поэтому определение величины средней концентрации в водах суши более условно, чем в воде океана.

Наиболее обоснованные данные, полученные А.П.Виноградовым (1967), А. П.Лисициным (1978), Э.Голдбергом (1965), Х.Боуэном (1966), К. Турекианом (1969) использованы для расчетов, приведенных в табл. 4.3.

Несмотря на то, что общая минерализация пресных речных вод значительно меньше соленых морских, глобальный вынос рассеянных элементов в растворенном состоянии весьма значителен. Для фтора, стронция, железа, алюминия он равен миллионам тонн, для кальция, натрия, магния, сульфатной серы, хлора, кремния — сотням миллионов тонн, для калия — десяткам миллионов тонн, для брома, иода, бора, а также цинка, марганца и медИ _ сотням тысяч тонн в год. Большая часть рассеянных элементов удаляется с суши в количестве десятков тысяч тонн в год. Лишь отдельные элементы выносятся в меньшем количестве.

Таблица 4.3

Содержание растворимых форм химических элементов в речных

водах и интенсивность их вовлечения в водную миграцию

Химический элемент и ион

Средняя концентрация

Глобальный вынос с речным стоком, тыс т/год

Коэффициент водной миграции

в воде, мкт/л

в сумме солей, \%

С1

6400

5,33

262400

313,0

SO42-

12000

10,00

492 000

S

3960

3,30

162360

82,5

Соpr

6900

5,75

283 000

НСО3

58500

488,75

2398500

Скар6

11 508

9,58

471 828

Са

13000

10,80

533000

4,6

Mg

3300

2,75

135300

2,3

Na

4500

3,75

184500

1,7

К

1500

1,25

61500

0,5

NCV

1000

0,83

41000

N

225

0,19

9225

SiO2

13100

10,9

537100

Si

5700

4,75

233 700

0,15

Fe

670

0,558

27470

0,15

Al

75

625×10-4

3075

0,01

Sr

80

667×10-4

3280

2,90

P

20

11,7×10-4

820

0,21

F

40

333×10~4

1640

0,46

Ba

25

208,0×10-4

1025

0,31

Br

20

167,0×10-4

820

76,0

Zn

20

167,0×10-4

820

3,27

В

18

150,0×10-4

738

15,0

Mn

10

83,0×10-4

410

0,12

Сu

7

58,0×10~4

287

2,64

Ti

4

33,0×10-4

164

0,01

I

3

25,0×10-4

123

50,0

Zr

2,5

21,0×10-4

103

0,12

As

2

17,0×10~4

82

8,95

N1

2,5

21,0×10-4

123

0,81

Li

2,2

18,0×10~4

90

0,08

Rb

1,8

15,0×10~4

74

0,08

V

1,0

8,3×10~4

41

0,11

Cr

1,0

8,3×10~4

41

0,24

Mo

0,9

7,5×10-4

37

5,77

Pb

1

8,3×104

41

0,52

Sb

0,9

7,5×10~4

37

37,5

Sn

0,5

4,2×10~4

21

1,56

U

0,3

2,5×10-4

12

0,96

Co

0,25

2,1×10~4

10

0,29

Ag

0,2

1,7×10~4

8,2

35,42

Cd

0,2

1,7×10~4

8,2

10,63

Ga

0,09

0,75×10-4

3,7

0,04

Hg

Основы биогеохимии

Основы биогеохимии

Обсуждение Основы биогеохимии

Комментарии, рецензии и отзывы

4.2. особенности геохимии поверхностных вод суши: Основы биогеохимии, В.В.ДОБРОВОЛЬСКИЙ, 2003 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон Рассмотрены основные понятия биогеохимии как науки, приведен краткий обзор ис-тории ее развития. Изложены основные черты геохимии литосферы..

Электронная библиотека: учебники в электронном виде © 2014-2024 | Политика конфиденциальности | Скачать электронные книги

Все материалы сайта охраняются авторским правом! Наш сайт предоставляет возможность онлайн чтения учебников, но не скачивания. Если вас заинтересовала какая то книга, купите её в издательстве.
Если вы автор книги и не хотите, чтоб она была на сайте, то напишите нам и она будет немедленно удалена. По всем вопросам обращаться на почту [email protected]