Страница 123

Страница 123: Безопасность жизнедеятельности, Сергей Викторович Белов, 1998 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон учебник по очень важному предмету в жизни людей

/ — трансформатор; 2 — сеть; 3 — корпус токоприемни» 4 — обмотка электродвигателя; 5 — заземлитель; 6 сопротивление заземления нейтрали (условно)

При пробое изоляции токоведущих частей на корпус, изолированный от земли, он оказывается под фазовым напряжением Uф. В этом случае ток, проходящий через человека,

где Rч — сопротивление тела человека; RСИЗ —сопротивление средств индивидуальной защиты; при их отсутствии RСИЗ =0.

При наличии заземления вследствие отекания тока на землю напряжение прикосновения уменьшается и, следовательно, ток, проходящий через человека, оказывается меньше, чем в незаземленной установке. Чтобы напряжение на заземленном корпусе оборудования было минимальным, ограничивают сопротивление заземления. В установках 380/220 В она должна быть не более 4 Ом, в установках 220/127 В —не более 8 Ом. Если мощность источника питания не превышает 100 кВА, сопротивление заземления может быть в пределах 100м.

В качестве заземляющих устройств электроустановок в первую очередь должны быть использованы естественные заземлители. Возможно применение железобетонных фундаментов промышленных зданий и сооружений. При отсутствии естественных заземлителей допускается применение переносных заземлителей, например, ввинчиваемых в землю стальных труб, стержней, уголков. После заглубления в землю они должны иметь концы длиной 100...200 мм над поверхностью земли, к которым привариваются соединительные проводники. Категорически запрещается использовать в качестве заземлителей трубопроводы с горючими жидкостями и газами.

Рис. 5.11. Схема зануления в трехфазной четырехпроводной

сети с заземленной нейтралью:

/ — трансформатор; 2 — сеть; 3 — предохранитель; 4 — обмотка электродвигателя; 5—корпус электродвигателя; 6—зануляющий проводник; 7—нулевой защитный проводник; 8—сопротивление заземления нейтрали

Зануление состоит в преднамеренном соединении металлических нетоковедущих частей оборудования, которые могут оказаться под напряжением вследствие пробоя изоляции, с нулевым защитным проводником (рис. 5.11). При замыкании любой фазы на корпус образуется контур короткого замыкания, характеризуемый силой тока весьма большой величины, достаточной для «выбивания» предохранителей в фазных питающих проводах. Таким образом электроустановка обесточивается. Предусматривается повторное заземление нулевого проводника на случай обрыва нулевого провода на участке, близком к нейтрали. По этому заземлению ток стекает на землю, откуда попадает в эаземление нейтрали, по нему во все фазные провода, включая имеющий пробитую изоляцию, далее на корпус. Таким образом образуется контур короткого замыкания.

Защитное отключение электроустановок обеспечивается путем введения устройства, автоматически отключающего оборудование — потребитель тока при возникновении опасности поражения током. Схемы отключающих автоматических устройств весьма разнообразны. Во всех случаях система срабатывает на превышение какого-либо параметра в электрических цепях технологического оборудования (силы тока, напряжения, сопротивления изоляции). На рис. 5.12 представлена схема защитного отключения с использованием реле максимального тока

Рис. 5.12. Принципиальная схема устройства защитного отключения:

/—реле максимального тока; 2—трансформатор тока; 3—проводник; 4—заземлитель; 5— электродвигатель; о—пускатель; 7—блок-контакты; 8—сердечник; 9—катушка пускателя; 10, 12, 13—кнопки; //—вспомогательное сопротивление

.

Повышение электробезопасности достигается также путем применения изолирующих, ограждающих, предохранительных и сигнализирующих средств защиты.

Изолирующие электрозащитные средства делятся на основные и дополнительные. Основные изолирующие электрозащитные средства способны длительное время выдерживать рабочее напряжение электроустановки, и поэтому ими разрешается касаться токоведущих частей, находящихся под напряжением, и работать на этих частях. К таким средствам относятся: в электроустановках напряжением до 1000 В — диэлектрические резиновые перчатки, инструмент с изолирующими рукоятками и указатели напряжения до 1000 В (ранее назывались токоискателями); в электроустановках напряжением выше 1000 В —" изолирующие штанги, изолирующие и электроизмерительные клеши, а также указатели напряжения выше 1000 В.

Дополнительные изолирующие электрозащитные средства облад. ют недостаточной электрической прочностью и поэтому не могр самостоятельно защищать человека от поражения током. Их назначение — усилить защитное действие основных изолирующих средств, вместе с которыми они должны применяться. К дополнительным изолирующим средствам относятся: в электроустановках напряжением до 1000 В —диэлектрические галоши, коврики и изолирующие подставки, в электроустановках напряжением выше 1000 В —диэлектрические перчатки, боты, коврики, изолирующие подставки.

Ограждающие средства защиты предназначены для временного таждения токоведущих частей (временные переносные ограждения, иты ограждения-клетки, изолирующие накладки, изолирующие колпаки).

Сигнализирующие средства включают запрещающие и предупреж-лающие знаки безопасности, а также плакаты: запрещающие, предостерегающие, разрешающие, напоминающие. Чаще всего используется предупреждающий знак «Проход запрещен».

Предохранительные средства защиты предназначены для индивидуальной защиты работающего от световых, тепловых и механических воздействий. К ним относят: защитные очки, противогазы, специальные рукавицы и т. п.

Безопасность жизнедеятельности

Безопасность жизнедеятельности

Обсуждение Безопасность жизнедеятельности

Комментарии, рецензии и отзывы

Страница 123: Безопасность жизнедеятельности, Сергей Викторович Белов, 1998 читать онлайн, скачать pdf, djvu, fb2 скачать на телефон учебник по очень важному предмету в жизни людей